Math, asked by Missincridedible, 7 hours ago


\color{violet}\huge{qu}\color{red}\huge{es}\color{blue}\huge{ti}\color{orange}\huge{on}
answer \: neeed \: of \: both \: with \:  \\ step \: by \: step

Attachments:

Answers

Answered by mathdude500
8

Given Question

Verify in the following whether g(x) is a factor of p(x).

 \sf \:(i) \:  \:  g(x) = x - 2, \: p(x) =  {x}^{4} -  {x}^{3} -  {x}^{2} - x - 2

 \sf \:(ii) \:  \:  g(x) = x + 1, \: p(x) = 2{x}^{3}  +  {x}^{2} - 2x + 1

 \green{\large\underline{\sf{Solution-i}}}

Given that,

 \rm :\longmapsto\: p(x) =  {x}^{4} -  {x}^{3} -  {x}^{2} - x - 2

and

\rm :\longmapsto\:g(x) = x - 2

We know,

Factor theorem states that if g(x) = x - a is a factor of polynomial f(x), then remainder f(a) = 0.

So, using Factor theorem, Consider

\rm :\longmapsto\:p(2)

\rm \:  =  \:  {2}^{4} -  {2}^{3} -  {2}^{2} - 2 - 2

\rm \:  =  \:  16 - 8 - 4 - 4

\rm \:  =  \:  16 - (8 + 4 +  4)

\rm \:  =  \:  16 - 16

\rm \:  =  \: 0

\rm\implies \:p(2) \:   =  \: 0

So,

\bf\implies \:g(x) \: is \: factor \: of \: p(x)

 \green{\large\underline{\sf{Solution-ii}}}

\rm :\longmapsto\: p(x) = 2{x}^{3}  +  {x}^{2} - 2x + 1

and

\rm :\longmapsto\: g(x) = x + 1

Now, By using Factor Theorem, Consider

\rm :\longmapsto\:p( - 1)

\rm \:  =  \: 2 {( - 1)}^{3} +  {( - 1)}^{2} - 2( - 1) + 1

\rm \:  =  \:  - 2 + 1  + 2 + 1

\rm \:  =  \: 2

\rm\implies \:p( - 1) \:  \ne \: 0

So,

\bf\implies \:g(x) \: is  \: not \: a\: factor \: of \: p(x)

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

More Identities to know :-

(a + b)² = a² + 2ab + b²

(a - b)² = a² - 2ab + b²

a² - b² = (a + b)(a - b)

(a + b)² = (a - b)² + 4ab

(a - b)² = (a + b)² - 4ab

(a + b)² + (a - b)² = 2(a² + b²)

(a + b)³ = a³ + b³ + 3ab(a + b)

(a - b)³ = a³ - b³ - 3ab(a - b)

Answered by sumellikaagnisha
2

hope it helps you

please mark me as brainliest

Attachments:
Similar questions