Math, asked by maheshtalpada412, 1 day ago


\colorbox{blue}{ \colorbox{red} { \colorbox{maroon}{\color{pink} \text{find \:  \( \color{pink}  \tt\dfrac{dy}{dx}:\)- } \text{\(   \color{pink} \tt \: x=a \sec ^{3} \theta, y=a \tan ^{3} \theta \)}}}}
Answer with proper explanation.

Don't Dare for spam.

→ Expecting answer from :

★ Moderators
★ Brainly stars and teacher
★ Others best users ​​​​​

Answers

Answered by senboni123456
5

Answer:

Step-by-step explanation:

We have,

\rm{x=a\,sec^3(\theta)\,\,\,\,\,\&\,\,\,\,\,y=a\,tan^3(\theta)}

\rm{\implies\,\dfrac{dx}{d\theta}=3a\,sec^2(\theta)\cdot\,sec(\theta)\,tan(\theta)\,\,\,\,\,\&\,\,\,\,\,\dfrac{dy}{d\theta}=3a\,tan^2(\theta)\cdot\,sec^2(\theta)}

Now,

\rm{\dfrac{dy}{dx}=\dfrac{\dfrac{dy}{d\theta}}{\dfrac{dx}{d\theta}}=\dfrac{3a\,tan^2(\theta)\,sec^2(\theta)}{3a\,sec^2(\theta)\cdot\,sec(\theta)\,tan(\theta)}}

\rm{\implies\,\dfrac{dy}{dx}=\dfrac{tan(\theta)}{sec(\theta)}}

\rm{\implies\,\dfrac{dy}{dx}=sin(\theta)}

Answered by anushkasengupta786
5

Answer:

Come fast. I am waiting. gichxzfR

Similar questions