Math, asked by talpadadilip417, 2 days ago


 \colorbox{red} {\boxed{ \color{white}\text{if \: } \tt \: y=x^{x^{x}} \: then \:  \:  \: find \:  \:  \dfrac{dy}{dx} .}}
Answer with proper explanation.

Don't Dare for spam.

→ Expecting answer from :

★ Moderators
★ Brainly stars and teacher
★ Others best users ​​​​​

Answers

Answered by mathdude500
9

\large\underline{\sf{Solution-}}

Given function is

\rm \: y \:  =  \:  {x}^{ {x}^{x} }  \\

On taking log on both sides, we get

\rm \: logy \:  =  \:  log{x}^{ {x}^{x} }  \\

We know,

\boxed{\sf{  \:log {x}^{y} = ylogx \: }} \\

So, using this result, we get

\rm \: logy =  {x}^{x} \: logx \\

Again, taking log on both sides, we get

\rm \:log( logy) = log\bigg( {x}^{x} \: logx\bigg) \\

We know,

\boxed{\sf{  \:logxy = logx + logy \: }} \\

So, using this result, we get

\rm \: log(logy) = log {x}^{x} + log(logx) \\

can be further rewritten as

\rm \: log(logy) = xlogx + log(logx) \\

On differentiating both sides w. r. t. x, we get

\rm \: \dfrac{d}{dx}log(logy) =\dfrac{d}{dx}\bigg( xlogx + log(logx) \bigg)\\

We know,

\boxed{\sf{  \:\dfrac{d}{dx}logx =  \frac{1}{x} \: }} \\

and

\boxed{\sf{  \:\dfrac{d}{dx}uv \:  = \: u\dfrac{d}{dx}v  +  \: v\dfrac{d}{dx}u \: }} \\

So, using these results, we get

\rm \: \dfrac{1}{logy}\dfrac{d}{dx}logy = x\dfrac{d}{dx}logx + logx\dfrac{d}{dx}x + \dfrac{1}{logx}\dfrac{d}{dx}logx \\

\rm \: \dfrac{1}{logy}\dfrac{1}{y}\dfrac{dy}{dx} = x \times \dfrac{1}{x} + logx \times 1 + \dfrac{1}{logx}\dfrac{1}{x} \\

\rm \: \dfrac{1}{y \: logy}\dfrac{dy}{dx} = 1 + logx + \dfrac{1}{x \: logx} \\

\rm \: \dfrac{dy}{dx} = y \: logy\bigg(1 + logx + \dfrac{1}{x \: logx}\bigg) \\

On substituting the values of y and logy from above, we get

\rm \: \dfrac{dy}{dx} =  {x}^{ {x}^{x} }  \:  {x}^{x} \:  logx\bigg(1 + logx + \dfrac{1}{x \: logx}\bigg) \\

\rm \: \dfrac{dy}{dx} =  {x}^{ {x}^{x} }  \:  {x}^{x} \:  \bigg(logx + (logx)^{2}  + \dfrac{1}{x}\bigg) \\

Hence,

\rm\implies \:\boxed{\sf{  \:\rm \: \dfrac{dy}{dx} =  {x}^{ {x}^{x} }  \:  {x}^{x} \:  \bigg(logx + (logx)^{2}  + \dfrac{1}{x}\bigg) \: }} \\

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Additional Information :-

\begin{gathered}\boxed{\begin{array}{c|c} \bf f(x) & \bf \dfrac{d}{dx}f(x) \\ \\  \frac{\qquad \qquad}{} & \frac{\qquad \qquad}{} \\ \sf k & \sf 0 \\ \\ \sf sinx & \sf cosx \\ \\ \sf cosx & \sf  -  \: sinx \\ \\ \sf tanx & \sf  {sec}^{2}x \\ \\ \sf cotx & \sf  -  {cosec}^{2}x \\ \\ \sf secx & \sf secx \: tanx\\ \\ \sf cosecx & \sf  -  \: cosecx \: cotx\\ \\ \sf  \sqrt{x}  & \sf  \dfrac{1}{2 \sqrt{x} } \\ \\ \sf logx & \sf \dfrac{1}{x}\\ \\ \sf  {e}^{x}  & \sf  {e}^{x}  \end{array}} \\ \end{gathered}

Similar questions