Math, asked by umiko28, 10 months ago


 {cos}^{ - 1} \frac{1}{x} =  {sec}^{ - 1} x \\  \\ proved
solved fast

don't spam​


Anonymous: oye
Anonymous: ...

Answers

Answered by Anonymous
5

Step-by-step explanation:

 {cos}^{ - 1}  \frac{1}{x} =  {sec}^{z - 1}x \\  \\  \bf\  r.h.s =  \\  \\ \sf\ let \\   y =  {sec}^{ - 1}x \\  \\  \sf\ \implies: x = sec \: y \\  \\\sf\ \implies: x =  \frac{1}{cos \: y} \\  \\   \sf\ \implies: cos \: y =  \frac{1}{x}  \\  \\\sf\ \implies: y =  {cos}^{ - 1} \frac{1}{x}  \\  \\\sf\ \implies:  {sec}^{ - 1}x =  {cos}^{ - 1}  \frac{1}{x}   \\  \\ \tt\ \:  l .h.s

Answered by Anonymous
1

Answer:

(cos^-1)1/x=(sec^-1)x

solution✏

R.H.S

LET y=(sec^-1)x

=>x=sec y

=>x=1/cos y

=>cos y=1/x

=>y=(cos^-1)1/x

=>(sec^-1)x=(cos^-1)1/x

HOPE IT HELP YOU

Similar questions