Math, asked by pratimatiwari19882, 5 months ago


cos^{2} \alpha -  \sin^{2} \alpha =  \tan^{2} \beta  \\ prove \: that \:  \cos\beta  = 1 \div  \sqrt{2} \cos \alpha

Answers

Answered by mathdude500
1

\large\underline\blue{\bold{Given \:  Question :-  }}

 \tt \:  cos^{2} \alpha - \sin^{2} \alpha = \tan^{2} \beta  \:  \:  \:  \:  \:  \:  \:  \:  \\  \tt \:  ⟼ prove \: that \: \cos\beta = 1 \div \sqrt{2} \cos \alpha </p><p>

─━─━─━─━─━─━─━─━─━─━─━─━─

\begin{gathered}\Large{\bold{\pink{\underline{Formula \:  Used \::}}}}  \end{gathered}

\large \boxed{ \tt \:  \red{ ⟼ (1) \:cos2x =  {cos}^{2} x -  {sin}^{2} x}}

\large \boxed{ \tt \:  \red{ ⟼ (2) \: 1 + cos2x = 2 {cos}^{2} x}}

\large \boxed{ \tt \:  \red{ ⟼ (3) \: {sec}^{2} x -  {tan}^{2} x = 1}}

─━─━─━─━─━─━─━─━─━─━─━─━─

\large\underline\purple{\bold{Solution :-  }}

─━─━─━─━─━─━─━─━─━─━─━─━─

\tt \:  cos^{2} \alpha - \sin^{2} \alpha = \tan^{2} \beta

\tt : \implies \:cos2 \alpha  =  {sec}^{2} \ \beta   - 1

\tt : \implies \: {sec}^{2}  \beta  = 1 + cos2 \alpha

\tt : \implies \: {2cos}^{2}  \alpha  =  {sec}^{2}  \beta

\tt : \implies \:sec \beta  =  \sqrt{2} cos \alpha

\tt : \implies \:\dfrac{1}{cos \beta }  =  \sqrt{2} cos \alpha

\tt : \implies \:cos \beta  = \dfrac{1}{ \sqrt{2}cos \alpha  }

─━─━─━─━─━─━─━─━─━─━─━─━─

\large{\boxed{\boxed{\bf{Hence, Proved}}}}

─━─━─━─━─━─━─━─━─━─━─━─━─

\large \red{\bf \:  ⟼ Explore \:  more } ✍

Trigonometry Formulas

sin(−θ) = −sin θ

cos(−θ) = cos θ

tan(−θ) = −tan θ

cosec(−θ) = −cosecθ

sec(−θ) = sec θ

cot(−θ) = −cot θ

Product to Sum Formulas

sin x sin y = 1/2 [cos(x–y) − cos(x+y)]

cos x cos y = 1/2[cos(x–y) + cos(x+y)]

sin x cos y = 1/2[sin(x+y) + sin(x−y)]

cos x sin y = 1/2[sin(x+y) – sin(x−y)]

Sum to Product Formulas

sin x + sin y = 2 sin [(x+y)/2] cos [(x-y)/2]

sin x – sin y = 2 cos [(x+y)/2] sin [(x-y)/2]

cos x + cos y = 2 cos [(x+y)/2] cos [(x-y)/2]

cos x – cos y = -2 sin [(x+y)/2] sin [(x-y)/2]

Sum or Difference of angles

cos (A + B) = cos A cos B – sin A sin B

cos (A – B) = cos A cos B + sin A sin B

sin (A+B) = sin A cos B + cos A sin B

sin (A -B) = sin A cos B – cos A sin B

tan(A+B) = [(tan A + tan B)/(1 – tan A tan B)]

tan(A-B) = [(tan A – tan B)/(1 + tan A tan B)]

cot(A+B) = [(cot A cot B − 1)/(cot B + cot A)]

cot(A-B) = [(cot A cot B + 1)/(cot B – cot A)]

cos(A+B) cos(A–B)=cos^2A–sin^2B=cos^2B–sin^2A

sin(A+B) sin(A–B) = sin^2A–sin^2B=cos^2B–cos^2A

Multiple and Submultiple angles

sin2A = 2sinA cosA = [2tan A /(1+tan²A)]

cos2A = cos²A–sin²A = 1–2sin²A = 2cos²A–1= [(1-tan²A)/(1+tan²A)]

tan 2A = (2 tan A)/(1-tan²A)

─━─━─━─━─━─━─━─━─━─━─━─━─

Similar questions