Physics, asked by arman405, 6 months ago

 \cos^{4} \theta -  \sin {}^{4} \theta =  \frac{2}{3}  \:  \: then \:  \cos {}^{2} \theta - 1 = ?​

Answers

Answered by Anonymous
7

Question:

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

 \cos^{4} \theta - \sin {}^{4} \theta = \frac{2}{3} \: \: then \: \cos {}^{2} \theta - 1 = ?

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

Solution:

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

We know that,

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

 \sin {}^{2} \theta +  \cos {}^{2} \theta = 1

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

 \cos  {}^{4} \theta  -  \sin {}^{4} \theta  =  \frac{2}{3}

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

( \cos {}^{2}\theta  +  \sin {}^{2} \theta )( \cos {}^{2} \theta  -  \sin {}^{2} \theta ) =  \frac{2}{3}

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

\longrightarrow \sin {}^{2} \theta = 1 -  \cos {}^{2}   \theta

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

\longrightarrow \cos {}^{2} \theta - (1 -  \cos {}^{2} \theta) =  \frac{2}{3}

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

\longrightarrow2 \cos {}^{2} \theta - 1 =  \frac{2}{3}

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

Thus, 2/3 is the required solution.

Similar questions