Math, asked by irfan122, 11 months ago


 \cos( \alpha )  =  \sin(150 -  \alpha )
Find the value of alpha.

Answers

Answered by rajsingh24
51

\red{QUESTION:-}

cos( \alpha ) = sin(150 -  \alpha )

\red{ANSWER:-}

\implies \: cos( \alpha ) = sin(150 -  \alpha ) \\  \implies \: sin( \frac{\pi}{2}  -  \alpha ) - sin(150 -  \alpha ) \\ \implies \: sin( \frac{\pi}{2}  -  \alpha ) - sin(150 -  \alpha ) \:  = 0 \\ \implies  \: 2cos( \frac{\pi - 4 \alpha   + 300}{4} )sin( \frac{\pi - 300}{4} ) = 0 \\ \implies  \: 2sin( \frac{\pi - 300}{4} )cos( \frac{\pi - 4a + 300}{4} ) = 0 \\ \implies  \: cos( \frac{\pi - 4 \alpha  + 300}{4}) = 0 \\ \implies  \frac{\pi - 4 \alpha  + 300}{4} =  \frac{\pi}{2}  + k\pi \:  \:...... (k \: \epsilon \: z) \\ \implies\pi - 4 \alpha  + 300 = 2\pi + 4k\pi.......(k \: \epsilon \: z) \\ \implies \:  - 4 \alpha  = 2\pi - \pi - 300 + 4k\pi.......(k \: \epsilon \: z) \\ \implies \:  - 4  \alpha  = \pi - 300 + 4k\pi.......(k \: \epsilon \: z) \\   \implies \: \red{\alpha  =  \frac{\pi}{4}   + 75  + k\pi.......(k \: \epsilon \: z) }\:

Answered by JeanaShupp
0

The value of alpha should be 60.

Explanation:

We are given that ,

\cos (\alpha)=\sin (150^{\circ}-\alpha)

Since we know that  , \mathbf{\sin (90^{\circ}-x)=\cos x}

\\\\\Rightarrow\ \sin (90^{\circ})=\sin (150^{\circ}-\alpha)

\Rightarrow\ 90^{\circ}=150^{\circ}-\alpha\\\\\Rightarrow\ \alpha=150^{\circ}-90^{\circ}\ \ [\text{Subtract 90 from both sides}]\\\\\Rightarrow\mathbf{\alpha=60^{\circ}}

Hence, the value of alpha should be 60.

# Learn more :

Find the possible values of sinx if 8 sinx - cos x =4

https://brainly.in/question/1996446

Similar questions