Math, asked by nath71, 1 year ago



 { \cot(?) }^{2}  \alpha ( \sec( \alpha  - 1 \div 1 \ +  \sin( \alpha ) +  { \sec(?) }^{2}  \alpha ( \sin( \alpha  - 1 \div 1 +  \sec( \alpha ) ) )

Answers

Answered by devanayan2005
1

LHS

=cot²A(secA-1)/(1+sinA)

={(cos²A/sin²A)(1/cosA-1)}/(1+sinA)

=[{cos²A/(1-cos²A)}{(1-cosA)/cosA}]/(1+sinA)

=[{cos²A/(1+cosA)(1-cosA)}×{(1-cosA)cosA}]/(1+sinA)

={cosA/(1+cosA)}/(1+sinA)

=cosA/(1+sinA)(1+cosA)

RHS

=sec²A(1-sinA)/(1+secA)

=(1/cos²A)(1-sinA)/(1+1/cosA)

={(1-sinA)/cos²A}/{(1+cosA)/cosA}

={(1-sinA)/(1-sin²A)}/{(1+cosA)/cosA}

={(1-sinA)/(1+sinA)(1-sinA)}/{(1+cosA)/cosA}

={1/(1+sinA)}/{(1+cosA)/cosA}

=cosA/(1+sinA)(1+cosA)

∴, LHS=RHS (Proved)

Hope this helped you!!!!

Answered by Anonymous
3

Answer:

REFER TO ATTACHMENT FOR ANSWER .

Legit Solved by KarnShubham ❤️

Attachments:
Similar questions