Math, asked by charuagarwal98, 8 months ago


 \cot(x)  +  \tan(x)  = 2 \csc(x)

Answers

Answered by anishsindhu2004
0

Step-by-step explanation:

cotx + tanx = cosx/sinx + sinx/cosx

= (cos^2x + sin^2x)/sinx × cosx = 1/sinx × cosx =

(1×2)/sinx × cosx × 2 = 2/ sin2x = 2cosecx

Answered by Mihir1001
31

\huge{\underline{\bf\red{Questi {\mathbb{O}} n} :}}

  • Find the value of x .

\huge{\underline{\: \bf\green{Answ {\mathbb{E}} r}\ \: :}}

  • The value of x is \blue{\underline{\bf\green{\quad 60 \degree \quad}}}

\Large{\underline{\bf\purple{Giv {\mathbb{E}} n}\ :}}

  •  \boxed{ \cot(x) +  \tan(x) = 2 \cosec(x)   }

\Large{\underline{\bf\purple{To \ Fi {\mathbb{N}} d}\ :}}

  • Value of x .

\huge{\underline{\bf\blue{Soluti {\mathbb{O}} n}\ :}}

we have,

\begin{aligned} \red{ \cot(x) +  \tan(x)   }& =  \red{ 2 \cosec(x)} \\  \\ { \purple{ \implies}} \ \ \frac{ \cos(x) }{ \sin(x) }   + \frac{\sin(x) }{ \cos(x) }  & =  \frac{2}{ \sin(x) } \\  \\ { \purple{ \implies}} \frac{ { \cos }^{2}(x) +  { \sin }^{2}(x)  }{  \cancel{\sin(x)} \cos(x)  }  & =  \frac{2}{ \cancel{ \sin(x)}} \\  \\ { \purple{ \implies}} \qquad \qquad \ \ \:  \frac{1}{ \cos(x) }  & = 2 \\   \big[ \sf \because { \sin }^{2} \theta +  { \cos }^{2}  \theta  = 1 \big] \\  \\ { \purple{ \implies}} \qquad \qquad  \ \ \ \sec(x) & = 2\\  \\ { \purple{ \implies}} \qquad \qquad \ \ \ \sec(x)  & =  \sec(60 \degree)\\  \\ { \purple{ \implies}} \qquad \qquad \qquad \quad \green x  & =  \green{60 \degree} & & & \end{aligned}

\red{\rule{5.5cm}{0.02cm}}

\Large{ \mid {\underline{\underline{\bf\green{BrainLiest \ AnswEr}}}} \mid }

Similar questions