Math, asked by aradhaychaudhary15, 1 month ago


  \csc^{6}  \alpha  =  \cot^{6}  \alpha  + 3 \cot^{2}  \alpha  \ \csc^{2} \alpha  + 1

Answers

Answered by assingh
43

Topic :-

Trigonometry

To Proof :-

\csc^6\alpha=\cot^6\alpha+3\cot^2\alpha\cdot \csc^2\alpha+1

Proof :-

Solving RHS,

\leadsto \cot^6\alpha+3\cot^2\alpha\cdot \csc^2\alpha+1

\leadsto(\cot^2\alpha)^3+3\cot^2\alpha\cdot (1+\cot^2\alpha)+(1)^3

(\because \csc^2\alpha=1+\cot^2\alpha)

\leadsto (\cot^2\alpha+1)^3

(\because a^3+3ab(a+b)+b^3=(a+b)^3)

\leadsto(\csc^2\alpha)^3

(\because \csc^2\alpha=1+\cot^2\alpha)

\leadsto \csc^6\alpha

LHS

\leadsto \csc^6\alpha

We observe that LHS = RHS.

Hence, Proved !!

Additional Formulae :-

\sin^2\alpha+\cos^2\alpha=1

1+\tan^2\alpha=\sec^2\alpha

\sin 2\alpha= 2\sin \alpha \cdot \cos \alpha

\cos 2\alpha= \cos^2\alpha-\sin^2\alpha

\sin 3\alpha =3\sin \alpha -4\sin^3\alpha

\cos 3\alpha =4\cos^3\alpha-3\cos \alpha

Similar questions