Math, asked by Ihavetrigquestion, 8 months ago


 \csc( a)  -  \sin(a)  \times  \sec(a)  -  \cos(a)  = 1  \div  \tan(a)  +  \cot(a)
Ncert question

Answers

Answered by Anonymous
4

Step-by-step explanation:

tanA1−cotA+cotA1−tanA=sinAcosA1−cosAsinA+cosAsinA1−sinAcos

=sin2AcosA(sinA−cosA)+cos2AsinA(cosA−sinA)

=sin3A−cos3AcosAsinA(sinA−cosA)

=sin2A+cosAsinA+cos2AcosAsinA

=1+cosAsinAcosAsinA

=1 ÷ tan + cot prove

Answered by Anonymous
24

Answer:

\huge{\mathcal{\purple{A}\green{n}\pink{s}\blue{w}\purple{E}\green{r}}}

tanA1−cotA+cotA1−tanA=sinAcosA1−cosAsinA+cosAsinA1−sinAcos

=sin2AcosA(sinA−cosA)+cos2AsinA(cosA−sinA)

=sin3A−cos3AcosAsinA(sinA−cosA)

=sin2A+cosAsinA+cos2AcosAsinA

=1+cosAsinAcosAsinA

=1 ÷ tan + cot prove

Similar questions