Ncert question
Answers
Answered by
4
Step-by-step explanation:
tanA1−cotA+cotA1−tanA=sinAcosA1−cosAsinA+cosAsinA1−sinAcos
=sin2AcosA(sinA−cosA)+cos2AsinA(cosA−sinA)
=sin3A−cos3AcosAsinA(sinA−cosA)
=sin2A+cosAsinA+cos2AcosAsinA
=1+cosAsinAcosAsinA
=1 ÷ tan + cot prove
Answered by
24
Answer:
tanA1−cotA+cotA1−tanA=sinAcosA1−cosAsinA+cosAsinA1−sinAcos
=sin2AcosA(sinA−cosA)+cos2AsinA(cosA−sinA)
=sin3A−cos3AcosAsinA(sinA−cosA)
=sin2A+cosAsinA+cos2AcosAsinA
=1+cosAsinAcosAsinA
=1 ÷ tan + cot prove
Similar questions