Physics, asked by ΙΙïƚȥΑαɾყαɳΙΙ, 7 hours ago

\dag \sf \green{Here \: is \: your \: ^question}

Attachments:

Answers

Answered by OoAryanKingoO78
2

Answer:

Given :

Object is placed at a distance of 30 cm from a convex lens.

Focal length of the lens is 20 cm .

To Find :

Position of Image .

Solution :

\longmapsto\tt{Object\:Distance\:(u)=-30\:cm}

\longmapsto\tt{Focal\:Length\:(f)=20\:cm}

Using Formula :

\longmapsto\tt\boxed{Mirror\:Formula=\dfrac{1}{f}=\dfrac{1}{v}-\dfrac{1}{u}}

Putting Values :

\longmapsto\tt{\dfrac{1}{f}+\dfrac{1}{u}=\dfrac{1}{v}}

\longmapsto\tt{\dfrac{1}{20}+\dfrac{1}{(-30)}=\dfrac{1}{v}}

\longmapsto\tt{\dfrac{1}{20}-\dfrac{1}{30}=\dfrac{1}{v}}

\longmapsto\tt{\dfrac{3-2}{60}=\dfrac{1}{v}}

\longmapsto\tt{\dfrac{1}{60}=\dfrac{1}{v}}

\longmapsto\tt\bf{60\:cm=v}

  • So , The Position of the image is 60 cm and the image formed is real and inverted .

\purple{\rule{45pt}{7pt}}\red{\rule{45pt}{7pt}}\pink{\rule{45pt}{7pt}}\blue{\rule{45pt}{7pt}}

Answered by Itzintellectual
1

Explanation:

\bf\red{\underline{\overbrace{Given}}}\tt\blue{::}

An object is placed at distance of 30cm from a convex lens of focal length 20cm. Find position of image.

\bf\red{\underline{\overbrace{To\: find}}}\tt\blue{::}

The position of image.

\bf\red{\underline{\overbrace{Solution}}}\tt\blue{::}

In order to obtain image coincident with object, the image of object after refraction from the convex lens must be formed on the center of curvature of the convex mirror.

Distance of image from convex lens after refraction from it can be found by using lens equation:

 \tt \red{ \frac{1}{v} }  \small \rm \pink{ = } \tt \blue{ \frac{1}{u}}  \small \:\tt \pink  +  \tt \green{ \frac{1}{f} }  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \\  \\ \tt \red{ \frac{1}{v} }  \small \rm \pink{ = } \tt \blue{ \frac{1}{ - 30}}  \small \:\tt \pink  +  \tt \green{ \frac{1}{ 20} } \\  \\ \tt \red{ \frac{1}{v} }  \small \rm \pink{ = }   \mathfrak \pink{\frac{1}{60} } \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\  \\ \tt \red{ {v} }  \small \rm \pink{ = }  \bf \purple{60cm}\\  \\

Thus, image is formed at a distance of \tt\pink{60}\tt\green{c.m.} from the lens.Thus, the convex mirror should be kept at distance \tt\orange{60-50c.m}\tt\purple{=10c.m}

Similar questions