Math, asked by llXxDramaticKingxXll, 8 hours ago


 \dag\sf{ \: No \: spam}

Attachments:

Answers

Answered by Anonymous
4

{\huge{\boxed{\boxed{\underline{Answer}}}}}

Option C).

Answered by mathdude500
4

\large\underline{\sf{Solution-}}

Given binomial expression is

\rm :\longmapsto\: {\bigg( {x}^{2} - \dfrac{1}{2x}  \bigg) }^{20}

It is given that rth term is the middle term of the given expansion.

Here,

  • n = 20

It means, there is only 1 middle term, i.e. 11 th term

So, it means rth term is 11th term.

As, we have to find (r + 3)th term.

It means, we have to find 14th term.

We know,

\rm :\longmapsto\:In \: binomial \:expansion \: of\:  {(x + y)}^{n}, \:

\boxed{\tt{ \: The \: general \: term \: is \:  T_{r + 1} \:  =  \: ^nC_{r} \:  {x}^{n - r} \:  {y}^{r} \: }}

So,

\rm :\longmapsto\:T_{14}

 \rm \:  =  \: T_{13 + 1}

 \rm \:  =  \: ^{20}C_{13} {( {x}^{2} )}^{20 - 13} {\bigg( - \dfrac{1}{2x} \bigg) }^{13}

 \rm \:  =   \:  - \: ^{20}C_{13} {( {x}^{2} )}^{7} {\bigg( \dfrac{1}{2x} \bigg) }^{13}

 \rm \:  =   \:  - \: ^{20}C_{13}  \times {x}^{14} \times \dfrac{1}{ {2}^{13}  \:  {x}^{13} }

 \rm \:  =   \:  - \: ^{20}C_{13}  \times {x}^{14 - 13} \times \dfrac{1}{ {2}^{13} }

 \rm \:  =   \:  - \: ^{20}C_{13}  \times {x}^{1} \times \dfrac{1}{ {2}^{13} }

We know,

\boxed{\tt{  \: ^nC_{r} \:  =  \: ^nC_{n - r} \: }}

So, using this, we get

 \rm \:  =   \:  - \: ^{20}C_{20 - 13}  \times {x}^{1} \times \dfrac{1}{ {2}^{13} }

 \rm \:  =   \:  - \: ^{20}C_{7}  \times x \times \dfrac{1}{ {2}^{13} }

 \rm \:  =   \:  - \: ^{20}C_{7} \: {2}^{ - 13}  \: x

So,

\sf\implies \: \boxed{\tt{ \:  T_{14}   =   \:  - \: ^{20}C_{7} \: x \times  \: {2}^{ - 13}  \: }}

Hence,

  • Option (c) is correct.

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

EXPLORE MORE

\boxed{\tt{  \: ^nC_{0} \:  =  \: ^nC_{n} \:  =  \: 1 \: }}

\boxed{\tt{  \: ^nC_{1} \:  =  \: ^nC_{n - 1} \:  =  \: n \: }}

\boxed{\tt{  \: ^nC_{x} \:  =  \: ^nC_{y} \:  \tt\implies \: x = y \:  \: or \: n = x + y \: }}

\boxed{\tt{ \:  \frac{^nC_{r}}{^nC_{r - 1}}  =  \frac{n - r + 1}{r} \: }}

\boxed{\tt{  \: ^nC_{r} \:  +  \: ^nC_{r - 1} \:  =  \: ^{n + 1}C_{r} \: }}

Similar questions