Math, asked by BrainlyElon, 4 months ago

\\ \dagger\ \; \bf Integral\ challenge\ :\\
\\ \displaystyle \bullet\ \; \red{\rm \int \dfrac{1}{x^2(x^4+1)^{\frac{3}{4}}}\ dx} \\
\\ \boxed{\underline{\bf Best\ of\ luck\ Guys\ ! }} \\

Answers

Answered by BrainlyIAS
108

Question :

\displaystyle \dagger\ \; \sf \red{ \int \dfrac{1}{x^2(x^4+1)^{\frac{3}{4}}}\ dx}

Solution :

\displaystyle \sf \int \dfrac{1}{x^2(x^4+1)^{\frac{3}{4}}}\ dx

\longrightarrow \displaystyle \sf \int \dfrac{1}{x^2 \left[ x^4 \left( 1+ \frac{1}{x^4}\right) \right]^{\frac{3}{4}}}\ dx

\longrightarrow \displaystyle \sf \int \dfrac{1}{x^2.x^3  \left( 1+ \frac{1}{x^4}\right) ^{\frac{3}{4}}}\ dx

\longrightarrow \displaystyle \sf \int \dfrac{1}{x^5  \left( 1+ \frac{1}{x^4}\right) ^{\frac{3}{4}}}\ dx

Let's use substitution method ,

\implies \sf u=1 + \dfrac{1}{x^4}

\implies \sf du=- \dfrac{4}{x^5}\ dx

\implies \sf - \dfrac{du}{4} = \dfrac{1}{x^5}\ dx

\longrightarrow \displaystyle \sf \int \dfrac{-1}{4(u)^{\frac{3}{4}}}\ du

\longrightarrow \displaystyle \sf \dfrac{-1}{4} \int u^{-\frac{3}{4}}\ du

\longrightarrow \displaystyle \sf \dfrac{-1}{4} \left[ \dfrac{u^{-\frac{3}{4}+1}}{-\frac{3}{4}+1} \right]\ +c

\longrightarrow \displaystyle \sf \dfrac{-1}{4} \left[ \dfrac{u^{\frac{1}{4}}}{\frac{1}{4}} \right]\ +c

\longrightarrow \displaystyle \sf -u^{\frac{1}{4}} +c

\bullet\ \; \sf We\ have\ ,\ u=1+ \dfrac{1}{x^4}

\longrightarrow \displaystyle \sf \pink{-\left( 1+ \dfrac{1}{x^4}\right)^{\frac{1}{4}} +c}

★ ═════════════════════ ★


pandaXop: Nice bro ☃️
BrainlyIAS: Thanks bro !
amansharma264: Awesome
BrainlyIAS: Thanks bro ! (。♡‿♡。)
BrainlyPopularman: Nice
BrainlyIAS: Thanks bro ! (•‿•)
Answered by BrainlyKilIer
119

\displaystyle \bullet\ \; \purple{\rm \int \dfrac{1}{x^2(x^4+1)^{\frac{3}{4}}}\ dx} \\

\displaystyle \implies\; {\rm \int \dfrac{1}{x^2(x^4+1)^{\frac{3}{4}}}\ dx} \\

\displaystyle \implies\; {\rm \int \dfrac{1}{x^5\:\bigg(1+\dfrac{1}{x^4}\bigg)^{\frac{3}{4}}}\ dx} \\

\displaystyle \implies\; {\rm \int \dfrac{dx}{x^5}\:\dfrac{1}{\bigg(1+\dfrac{1}{x^4}\bigg)^{\frac{3}{4}}}} \\

Let,

  • \sf{1\:+\:\dfrac{1}{x^4}\:=\:u} \\

\longrightarrow\:\sf{du\:=\:(-4x^{-5})\:.\:dx} \\

\longrightarrow\:\sf{du\:=\:\dfrac{-4}{x^{5}}\:.\:dx} \\

\longrightarrow\:\sf{\dfrac{du}{-4}\:=\:\dfrac{dx}{x^{5}}\:} \\

☛ Now putting these value in the above equation given as,

\displaystyle \implies\; {\rm \int \dfrac{du}{-4}\:\dfrac{1}{u^{\frac{3}{4}}}} \\

\displaystyle \implies\; {\rm \dfrac{1}{-4}\int \dfrac{du}{u^{\frac{3}{4}}}} \\

\displaystyle \implies\; {\rm \dfrac{1}{-4}\int u^{-\frac{3}{4}}\:du} \\

\displaystyle \implies\; {\rm \dfrac{1}{-4} \bigg[\dfrac{u^{-\frac{3}{4}\:+\:1}}{-\frac{3}{4}\:+\:1} \:+\:C\bigg]} \\

\displaystyle \implies\; {\rm \dfrac{1}{-4} \bigg[\dfrac{u^{\frac{1}{4}}}{\frac{1}{4}} \bigg]\:+\:C} \\

\displaystyle \implies\; {\rm \dfrac{1}{-4} \times{4} \: \bigg[u^{\frac{1}{4}}\bigg]\:+\:C} \\

\displaystyle \implies\; {\rm -1 \times{u^{\frac{1}{4}}}\:+\:C} \\

\displaystyle \implies\; {\rm -u^{\frac{1}{4}}\:+\:C} \\

\displaystyle \implies\; \green {\rm -\bigg(1\:+\:\dfrac{1}{x^4}\bigg)^{\frac{1}{4}}\:+\:C} \\


BrainlyIAS: Kindly check latéx and normal errors in the solution ಠ‿ಠ
BrainlyIAS: It's du/-4 = dx/x^5 not x^-5 check it
Similar questions