Science, asked by sikisharma04, 11 months ago


Derive  \: the  \: equation  \:  \: s = ut +  \frac{1}{2}  a {t}^{2} for \:  position - time  \: relation \: \  \textless \ br /\  \textgreater \ for  \: an  \: object  \: travelling \:  under  \: uniform  \: acceleration \:  on  \: a \: \  \textless \ br /\  \textgreater \ straight  \: path.

Answers

Answered by zidan43
1

Explanation:

let \: us \: consider \: a \: body \:</p><p> of \: mass \: m</p><p> \: covers \: a \: distance \: s \:  \\  let \: at \: time \: t \:  = 0 \: its \: initial \: velocity \: is \: u \: </p><p>and \: at \: time \: t \:  =  t \: it \: acquires \: </p><p>final \: velocity \: v</p><p> \\  \\ now \: we \: know  \\  v \:  =  \frac{ds}{dt}   \\  ds \:  = vdt \:  \:  -  -  - (1) \\  \\ integrating \: equation \: (1) \: we \: get \:  \\ and \: using \: v \:  = u \:  + at \\  \\ s \:  =  \: ut \:  +  \:  \frac{1}{2} a {t}^{2}

Similar questions
Math, 11 months ago