Hindi, asked by Anonymous, 1 month ago

\dfrac{1}{\log_at}+\dfrac{1}{\log_bt}+\dfrac{1}{\log_ct}=\dfrac{1}{\log_zt}

Find the value of z​

Answers

Answered by Anonymous
110

Identities :-

  • \sf\green{{\log_ba=\dfrac{\log a}{\log b}\quad\quad\dots(1)}}

  • \sf\green{{\log a+\log b=\log(ab)\quad\quad\dots(2)}}

⠀ ━━━━━━━━━━━━━━━━━━━━━⠀⠀

\sf\red{{\dfrac{1}{\log_at}+\dfrac{1}{\log_bt}+\dfrac{1}{\log_ct}=\dfrac{1}{\log_zt}}}\\\\

:\implies\sf{\dfrac{1}{\left(\dfrac{\log t}{\log a}\right)}+\dfrac{1}{\left(\dfrac{\log t}{\log b}\right)}+\dfrac{1}{\left(\dfrac{\log t}{\log c}\right)}=\dfrac{1}{\left(\dfrac{\log t}{\log z}\right)}}\\\\

:\implies\sf{\dfrac{\log a}{\log t}+\dfrac{\log b}{\log t}+\dfrac{\log c}{\log t}=\dfrac{\log z}{\log t}}\\\\

:\implies\sf{\dfrac{\log a+\log b+\log c}{\log t}=\dfrac{\log z}{\log t}}\\\\

:\implies\sf{\log a+\log b+\log c=\log z}\\\\

:\implies\sf{\log (abc)=\log z}\\\\

\sf{:\implies\boxed{\red{z=abc}}}\\\\

Similar questions