Math, asked by Dipa677, 4 months ago

 \dfrac{Cos \ A}{ 1 + Sin \ A} + \dfrac{1 + Sin \ A}{Cos \ A} =  \sf 2 sec A

Prove it
No spam! ​

Answers

Answered by Anonymous
19

To Prove :-

\\

\sf \dfrac{Cos \ A}{ 1 + Sin \ A} + \dfrac{1 + Sin \ A}{Cos \ A} =  \sf 2 sec A

\\

Proof :-

\\

 \\  \bf \: \: \leadsto \: \: L.H.S.\\\\

\leadsto \sf \dfrac{Cos \ A}{ 1 + Sin \ A} + \dfrac{1 + Sin \ A}{Cos \ A} \\\\\\\leadsto \sf\dfrac{ Cos^2 A + \Bigg(1 + Sin \ A \Bigg)^2}{\Bigg(1 + Sin \ A \Bigg)Cos \ A} \\\\\\\leadsto \sf \dfrac{ Cos^2 \ A + 1 \ Sin^2 \ A + 2 \ Sin \ A}{\Big(1 + Sin \ A \Big) + Cos \ A}\\\\\\\leadsto \sf \dfrac{ 2 + 2 \ Sin \ A}{Cos \ A \Big( 1 + Sin \ A \Big)}\\\\\\\leadsto \sf \dfrac{ 2}{Cos \ A} \\\\\\\leadsto {\bold\red{ 2 \ Sec \ A}}

\\

 \\  \bf \: \: \leadsto \: \: R.H.S.\\

 \\ \large\leadsto  { \boxed{\tt Hence \:  \: Proved}}\\

__________________________________________

Answered by nikhilkumarsaha27
0

Step-by-step explanation:</p><p></p><p>LHS = \frac{ \cos \: a }{1 + \sin \: a } + \frac{1 + \sin \: a}{ \cos \: a } \\ = \frac{ { \cos }^{2} a + 1 + { \sin}^{2}a + 2 \sin \: a }{ \cos \: a (1 + \sin \: a) } \\ = \frac{1 + 1 + 2 \sin \: a }{ \cos \: a(1 + \sin \: a ) } \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \\ = \frac{2 + 2 \sin \: a}{ \cos \: a(1 + \sin \: a) } \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \\ = \frac{2(1 + \sin \: a )}{ \cos \: a (1 + \sin \: a )} \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \\ = \frac{2}{ \cos \: a } \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \\ = 2 \sec \: a \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \LHS=1+sinacosa+cosa1+sina=cosa(1+sina)cos2a+1+sin2a+2sina=cosa(1+sina)1+1+2sina=cosa(1+sina)2+2sina=cosa(1+sina)2(1+sina)=cosa2=2seca</p><p></p><p>

Similar questions