Math, asked by snehasawant879, 5 months ago


differentiate \: w.r.t. \:  \sqrt{ \tan( \sqrt{x} ) }

Answers

Answered by Asterinn
5

Given :

 \sf \sqrt{ tan( \sqrt{x} ) }

To find :

  • differentiate the given expression with respect to x

Solution :

 \sf  \implies \: \dfrac{d(\sqrt{ tan( \sqrt{x} ) })}{dx}

Using Chain rule we will differentiate.

\sf  \implies  \dfrac{1}{2}  \times    \bigg({ tan( \sqrt{x}}) \bigg)^{ 1 -  \frac{1}{2} } \times  \dfrac{d({ tan( \sqrt{x} ) })}{dx} \times  \dfrac{d({\sqrt{x} })}{dx}

\sf  \implies  \dfrac{1}{2}  \times    \bigg({ tan( \sqrt{x})} \bigg)^{ -  \frac{1}{2} } \times  {{  {sec}^{2} ( \sqrt{x} ) }} \times  \dfrac{1}{2}  {({ \dfrac{1}{\sqrt{x}}  })}

\sf  \implies  \dfrac{{sec}^{2} ( \sqrt{x} ) }{4\sqrt{x} \sqrt{tan( \sqrt{x})} }

Answer :

 \bf \large \dfrac{{sec}^{2} ( \sqrt{x} ) }{4\sqrt{x} \sqrt{tan( \sqrt{x})} }

Similar questions