Math, asked by Anonymous, 1 year ago

\display \text{Find the square root of}\\\\\displaystyle{\frac{x^2}{y^2}+\frac{y^2}{x^2}+\frac{1}{2i}\left[\frac{x}{y}+\frac{y}{x}\right]+\frac{31}{16}}

Answers

Answered by ITzBrainlyGuy
8

Answer:

We want the square root of

 \frac{ {x}^{2} }{ {y}^{2} } +   \frac{ {y}^{2} }{ {x}^{2} }   +  \frac{1}{2i}( \frac{x}{y}   +  \frac{y}{x} ) +  \frac{31}{16}

let \: a =   \sqrt{ \frac{ {x}^{2} }{ {y}^{2} }  +  \frac{ {y}^{2} }{ {x}^{2}   }  +  \frac{1}{2i}( \frac{x}{y} +  \frac{y}{x}  ) +  \frac{31}{16}  }

Let \:  \frac{x}{y} \:  be \:  \: u = >

then   \sqrt{ {u}^{2} +  \frac{1}{ {u}^{2} }   +  \frac{1}{2i} (u +  \frac{1}{u})  +  \frac{31}{16}  }  \\  =  \sqrt{ {u}^{2} + 2 +  \frac{1}{ {u}^{2}  }  +  \frac{1}{2i} (u +  \frac{1}{2} ) +  \frac{31}{16}   - 2}  \\  =  \sqrt{ {(u +  \frac{1}{u}) }^{2} +  \frac{1}{2i} (u +  \frac{1}{u} ) -  \frac{1}{16}  }

Let

u +  \frac{1}{u}  = v  \\ a =  \sqrt{ {v}^{2}  +  \frac{1}{2i}v  -  \frac{1}{16} }   \\  =  \frac{1}{4}  \sqrt{16 {v}^{2}  - 8iv - 1}  \\   =  \frac{1}{4}  \sqrt{16 {v}^{2}  - 8iv -  {i}^{2} } \\  =  \frac{1}{4}  \sqrt{  {(4v - i)}^{2} }   \\   a =  + or -  \frac{1}{4}(4v - i) \\  =  + or -  \frac{1}{4}(4( \frac{x}{y}    +  \frac{y}{x} ) - i) \\  =  + or -  (\frac{x}{y}  -  \frac{y}{x}  -  \frac{i}{4}) \\ we \: therefore \: get \\  \sqrt{  \frac{ {x}^{2} }{ {y}^{2}  } +   \frac{ {y}^{2} }{ {x}^{2}  }    +  \frac{1}{2i}( \frac{x}{y}   +  \frac{y}{x}) +  \frac{31}{16}  }   \\  =  + or - ( \frac{x}{y} -  \frac{y}{x} -  \frac{i}{4}  )

Answered by Anonymous
86

 \huge \sf \green{hello \: mate}

As, we know that we have to find square root or given equation

 \tt \boxed{\frac{x^2}{y^2}+\frac{y^2}{x^2}+\frac{1}{2i}\left[\frac{x}{y}+\frac{y}{x}\right]+\frac{31}{16}}</p><p>

________________________

so , simply we can take the root of whole equation and then solve it

let \: \frac{x}{y} \: be \: \: u \implies

\tt\begin{lgathered}then \sqrt{ {u}^{2} + \frac{1}{ {u}^{2} } + \frac{1}{2i} (u + \frac{1}{u}) + \frac{31}{16} } \\ = \sqrt{ {u}^{2} + 2 + \frac{1}{ {u}^{2} } + \frac{1}{2i} (u + \frac{1}{2} ) + \frac{31}{16} - 2} \\ = \sqrt{ {(u + \frac{1}{u}) }^{2} + \frac{1}{2i} (u + \frac{1}{u} ) - \frac{1}{16} }\end{lgathered}

_______________________

let,

\tt\begin{lgathered}u + \frac{1}{u} = v \\ a = \sqrt{ {v}^{2} + \frac{1}{2i}v - \frac{1}{16} } \\ = \frac{1}{4} \sqrt{16 {v}^{2} - 8iv - 1} \\ = \frac{1}{4} \sqrt{16 {v}^{2} - 8iv - {i}^{2} } \\ = \frac{1}{4} \sqrt{ {(4v - i)}^{2} } \\ a = + or - \frac{1}{4}(4v - i) \\ = + or - \frac{1}{4}(4( \frac{x}{y} + \frac{y}{x} ) - i) \\ = + or - (\frac{x}{y} - \frac{y}{x} - \frac{i}{4}) \\ we \: therefore \: get \\ \sqrt{ \frac{ {x}^{2} }{ {y}^{2} } + \frac{ {y}^{2} }{ {x}^{2} } + \frac{1}{2i}( \frac{x}{y} + \frac{y}{x}) + \frac{31}{16} } \\ = + or - ( \frac{x}{y} - \frac{y}{x} - \frac{i}{4} )\end{lgathered}

Similar questions