Math, asked by sajan6491, 6 hours ago

 \displaystyle \bf \red{ \int_{0}^{1}  \bigg \{ \frac{1}{ \sqrt[k]{x} }  \bigg \} \: dx}

Answers

Answered by mathdude500
15

\large\underline{\sf{Solution-}}

Given integral is

\rm :\longmapsto\:\displaystyle \bf{ \int_{0}^{1} \bigg \{ \frac{1}{ \sqrt[k]{x} } \bigg \} \: dx}

can be rewritten as

\rm \:  =  \: \:\displaystyle \bf{ \int_{0}^{1} \frac{1}{  {\bigg(x\bigg) }^{ \dfrac{1}{k} }  }  \: dx}

\rm \:  =  \: \displaystyle \bf{ \int_{0}^{1}} \:  {\bigg(x\bigg) }^{ - \dfrac{1}{k} }  \: dx

\rm \:  =  \:  \dfrac{{\bigg(x\bigg) }^{ - \dfrac{1}{k} + 1 }}{ - \dfrac{1}{k} + 1 } \bigg| _{0}^{1}

\rm \:  =  \:  \dfrac{{\bigg(x\bigg) }^{\dfrac{k - 1}{k}}}{ \dfrac{k - 1}{k} } \bigg| _{0}^{1}

\rm \:  =  \: \dfrac{k}{k - 1} (1 - 0)

\rm \:  =  \: \dfrac{k}{k - 1}

Hence,

\rm\implies \:\:\boxed{\tt{ \displaystyle \bf{ \int_{0}^{1} \bigg \{ \frac{1}{ \sqrt[k]{x} } \bigg \} \: dx} =  \frac{k}{k - 1} \: }} \\

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

MORE TO KNOW

\begin{gathered}\begin{gathered}\boxed{\begin{array}{c|c} \bf f(x) & \bf \displaystyle \int \rm \:f(x) \: dx\\ \\ \frac{\qquad \qquad}{} & \frac{\qquad \qquad}{} \\ \sf k & \sf kx + c \\ \\ \sf sinx & \sf - \: cosx+ c \\ \\ \sf cosx & \sf \: sinx + c\\ \\ \sf {sec}^{2} x & \sf tanx + c\\ \\ \sf {cosec}^{2}x & \sf - cotx+ c \\ \\ \sf secx \: tanx & \sf secx + c\\ \\ \sf cosecx \: cotx& \sf - \: cosecx + c\\ \\ \sf tanx & \sf logsecx + c\\ \\ \sf \dfrac{1}{x} & \sf logx+ c\\ \\ \sf {e}^{x} & \sf {e}^{x} + c\end{array}} \\ \end{gathered}\end{gathered}

Answered by OoAryanKingoO78
2

Answer:

\large\underline{\sf{Solution-}}

Given integral is

\rm :\longmapsto\:\displaystyle \bf{ \int_{0}^{1} \bigg \{ \frac{1}{ \sqrt[k]{x} } \bigg \} \: dx}

can be rewritten as

\rm \:  =  \: \:\displaystyle \bf{ \int_{0}^{1} \frac{1}{  {\bigg(x\bigg) }^{ \dfrac{1}{k} }  }  \: dx}

\rm \:  =  \: \displaystyle \bf{ \int_{0}^{1}} \:  {\bigg(x\bigg) }^{ - \dfrac{1}{k} }  \: dx

\rm \:  =  \:  \dfrac{{\bigg(x\bigg) }^{ - \dfrac{1}{k} + 1 }}{ - \dfrac{1}{k} + 1 } \bigg| _{0}^{1}

\rm \:  =  \:  \dfrac{{\bigg(x\bigg) }^{\dfrac{k - 1}{k}}}{ \dfrac{k - 1}{k} } \bigg| _{0}^{1}

\rm \:  =  \: \dfrac{k}{k - 1} (1 - 0)

\rm \:  =  \: \dfrac{k}{k - 1}

Hence,

\rm\implies \:\:\boxed{\tt{ \displaystyle \bf{ \int_{0}^{1} \bigg \{ \frac{1}{ \sqrt[k]{x} } \bigg \} \: dx} =  \frac{k}{k - 1} \: }} \\

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Similar questions