Math, asked by sajan6491, 5 hours ago

 \displaystyle \bf \red{ \ln \bigg( \sum \limits_{ \beta  = 1}^{ \infty }  \int_{0}^{ \infty }    \frac{ {x}^{ \beta  - 1} {e}^{ -  \frac{x}{2020} }  }{2020 [( \beta  - 1)!^{} ]^{2} } \: dx \bigg) }

Spammers stay away ​

Answers

Answered by testingpurpose152001
4

Answer:

Step-by-step explanation:

\int\limits^\infty_0 {x^{\beta-1}\cdot e^{-\frac{x}{2020}} \, dx

Let,

\frac{x}{2020} = u \implies dx = 2020\cdot du\\\implies x = 2020\cdot u

\text{When } x ~\text{tends to }\infty~\text{then } u~ \text{also tends to }\infty \\\text{and when}~x=0~\text{then}~u =0

\int\limits^\infty_0 {x^{\beta-1}\cdot e^{-\frac{x}{2020}} \, dx

=2020\int\limits^\infty_0 {{(2020u)}^{\beta-1}\cdot e^{-u} \, du

= (2020)^\beta\int\limits^\infty_0 {{(u)}^{\beta-1}\cdot e^{-u} \, du                  (~\because~\Gamma(n) = \int\limits^\infty_0 {x^{n-1} e^{-x}} \, dx ~)

= (2020)^\beta \Gamma(\beta)                                       ( \because~\text{for integer }\beta,~\Gamma(\beta) = (\beta-1)! )

= (2020)^\beta (\beta-1)!

Now,

\displaystyle \bf \red{ \ln \bigg( \sum \limits_{\beta = 1}^{ \infty } \int_{0}^{ \infty }\frac{{x}^{\beta-1} e^{-\frac{x}{2020}}}{2020[(\beta-1)!]^2}\,dx\bigg)

\displaystyle \bf \red{ \ln \bigg( \sum \limits_{\beta = 1}^{ \infty } \frac{1}{2020[(\beta-1)!]^2}\int_{0}^{ \infty} {{ x}^{\beta-1} e^{-\frac{x}{2020}}}\,dx\bigg)

=\displaystyle \bf \red{ \ln \bigg( \sum \limits_{\beta = 1}^{ \infty } \frac{1}{2020[(\beta-1)!]^2}\cdot {(2020)^\beta \cdot (\beta-1)!}\bigg)

=\displaystyle \bf \red{ \ln \bigg( \sum \limits_{\beta = 1}^{ \infty } \frac{(2020)^{\beta-1}}{(\beta-1)!}\bigg)

= \ln(1 + \frac{2020}{1!} + \frac{(2020)^2}{2!} + \frac{(2020)^3}{3!}+\ldots)

=\ln(e^{2020})                       (~\because~e^x = \sum_{\n=0}^{\infty} \frac{x^n}{n!}~)

= 2020

Answered by Anonymous
3

 \displaystyle \sf \red{\int\limits^\infty_0 {x^{\beta-1}\cdot e^{-\frac{x}{2020}} \, dx}}

Let,

\begin{gathered}\frac{x}{2020} = u \implies dx = 2020\cdot du\\\implies x = 2020\cdot u\end{gathered}

\begin{gathered}\text{When } x ~\text{tends to }\infty~\text{then } u~ \text{also tends to }\infty \\\text{and when}~x=0~\text{then}~u =0\end{gathered}

 \displaystyle \sf \red{\int\limits^\infty_0 {x^{\beta-1}\cdot e^{-\frac{x}{2020}} \, dx}}

 \displaystyle \sf \red{=2020\int\limits^\infty_0 {{(2020u)}^{\beta-1}\cdot e^{-u} \, du}}

 \displaystyle{ \sf \red{ =  (2020)^\beta\int\limits^\infty_0 {{(u)}^{\beta-1}\cdot e^{-u} \, du (~\because~\Gamma(n) = \int\limits^\infty_0 {x^{n-1} e^{-x}} \, dx ~)}}}

 \displaystyle \sf \red{= (2020)^\beta \Gamma(\beta)=(2020) </p><p>                                      \:  \:  \: ( \because~\text{for integer }\beta,~\Gamma(\beta) = (\beta-1)!}

Now,

\displaystyle \bf \red{ \ln \bigg( \sum \limits_{\beta = 1}^{ \infty } \int_{0}^{ \infty }\frac{{x}^{\beta-1} e^{-\frac{x}{2020}}}{2020[(\beta-1)!]^2}\,dx\bigg)}

\displaystyle \bf \red{ \ln \bigg( \sum \limits_{\beta = 1}^{ \infty } \frac{1}{2020[(\beta-1)!]^2}\int_{0}^{ \infty} {{ x}^{\beta-1} e^{-\frac{x}{2020}}}\,dx\bigg)}

\displaystyle \bf \red{  = \ln \bigg( \sum \limits_{\beta = 1}^{ \infty } \frac{1}{2020[(\beta-1)!]^2}\cdot {(2020)^\beta \cdot (\beta-1)!}\bigg)}

\displaystyle \bf \red{ =  \ln \bigg( \sum \limits_{\beta = 1}^{ \infty } \frac{(2020)^{\beta-1}}{(\beta-1)!}\bigg)}

{\red{\ln(1 + \frac{2020}{1!} + \frac{(2020)^2}{2!} + \frac{(2020)^3}{3!}+\ldots)}}

 \sf \red{=\ln(e^{2020})(~\because~e^x = \sum \limits_{n=0}^{\infty} \frac{x^n}{n!}~)}

=2020

Similar questions