Math, asked by Anonymous, 16 hours ago


  \displaystyle \bold \red{\int^{4}_{2} \frac{ \log( {x}^{2}) }{ \log( {x}^{2} ) +  \log(36 - 12x +  {x}^{2} )}  \: dx}



❖ᴏɴʟʏ ᴘʀᴏᴘᴇʀ ꜱᴏʟᴠᴇᴅ ᴀɴꜱᴡᴇʀ ᴡɪᴛʜ ɢᴏᴏᴅ ᴇxᴘʟᴀɴᴀɪᴏɴ ɴᴇᴇᴅᴇᴅ
❖ ɴᴏ ꜱᴘᴀᴍᴍɪɴɢ
❖ᴏɴʟʏ ꜰᴏʀ ᴍᴏᴅᴇʀᴀᴛᴏʀꜱ, ʙʀᴀɪɴʟʏ ꜱᴛᴀʀꜱ ᴀɴᴅ ᴏᴛʜᴇʀ ʙᴇꜱᴛ ᴜꜱᴇʀꜱ​​​

Answers

Answered by sajan6491
24

{\displaystyle \bold \red{I=\int^{4}_{2} \frac{ \log{x}^{2} }{ \log{x}^{2} + \log(36 - 12x + {x}^{2} )} \: dx}}

{\displaystyle \bold \red{=\int^{4}_{2} \frac{ \log{x}^{2} }{ \log{x}^{2} + \log(6 - x ){}^{2}}   \: dx}}

{\displaystyle \bold \red{=\int^{4}_{2} \frac{ \log{x}^{} }{ \log{x}^{} + \log(6 - x ){}^{}}   \: dx -  -  -  - (1)}}

{\displaystyle \bold \red{ \implies I=\int^{4}_{2} \frac{ \log{(2 + 4 - x)}^{} }{ \log{(2 + 4 - x)}^{} + \log(x)} \: dx}}

By using property { \displaystyle  \bold{ \int^{b}_{a}f(x)dx }}

 \displaystyle{  \bold \red{ =  \int^{b}_{a}f(a + b - x)dx,\: we \: get}}

{\displaystyle \bold \red{ \implies I=\int^{4}_{2} \frac{ \log{(6 - x)}^{} }{ \log{(6 - x)}^{} + \log x} \:  -  -  -  - (2)}}

Eqs. (1)+(2) gives,

{\displaystyle \bold \red{  2I =\int^{4}_{2} 1 \: dx = 2}}

{\displaystyle \bold \red{ \implies I =1}}

Similar questions