Math, asked by Anonymous, 1 month ago

 { \displaystyle{{\boxed{ \bold \red{{\frac{d}{dy} \bigg( \frac{ \sqrt[In2]{ {x}^{2} {e}^{x} }\sin^{\pi}x }{Inx \: \int^{x}_{0} { \tan}^{ - 1}y \: dy } \bigg)}}}}}}
Don't spam otherwise report​​

Answers

Answered by mathdude500
6

\large\underline{\sf{Solution-}}

Given function is

\rm :\longmapsto\:\dfrac{ \sqrt[In2]{ {x}^{2} {e}^{x} }\sin^{\pi}x }{Inx \: \int^{x}_{0} { \tan}^{ - 1}y \: dy }

Let assume that

\rm :\longmapsto\:f(x) = \dfrac{ \sqrt[In2]{ {x}^{2} {e}^{x} }\sin^{\pi}x }{Inx \: \int^{x}_{0} { \tan}^{ - 1}y \: dy }

Now, Consider

\rm :\longmapsto\:\displaystyle \int \:  {tan}^{ - 1}y \: dy

can be rewritten as

\rm \:  =  \: \displaystyle \int \:1. \:   {tan}^{ - 1}y \: dy

\rm \:  =  \:  {tan}^{ - 1}y\displaystyle \int \: dy - \displaystyle \int \: \bigg[\dfrac{d}{dy} {tan}^{ - 1}y\displaystyle \int \: dy\bigg]dy

\rm \:  =  \: {tan}^{ - 1}y \: (y) - \displaystyle \int \: \dfrac{1}{ {y}^{2}  + 1}  \times y \: dy

\rm \:  =  \: {tan}^{ - 1}y \: (y) - \displaystyle \int \: \dfrac{y}{ {y}^{2}  + 1} \: dy

\rm \:  =  \: {tan}^{ - 1}y \: (y) - \dfrac{1}{2}  \displaystyle \int \: \dfrac{2y}{ {y}^{2}  + 1} \: dy

\rm \:  =  \: {tan}^{ - 1}y \: (y) - \dfrac{1}{2}log | {y}^{2}  + 1|

Therefore,

\rm :\longmapsto\:\displaystyle \int_0^x \:  {tan}^{ - 1}y \: dy = x{tan}^{ - 1}x -  \frac{1}{2}log | {x}^{2} + 1 |  - 0

\rm :\longmapsto\:\displaystyle \int_0^x \:  {tan}^{ - 1}y \: dy = x{tan}^{ - 1}x -  \frac{1}{2}log | {x}^{2} + 1 |

So,

\rm :\longmapsto\:f(x) = \dfrac{ \sqrt[In2]{ {x}^{2} {e}^{x} }\sin^{\pi}x }{Inx \: [x{tan}^{ - 1}x -  \frac{1}{2}log | {x}^{2} + 1 |]}

On differentiating both sides w. r. t. y, we get

\rm :\longmapsto\:\dfrac{d}{dy} f(x) =\dfrac{d}{dy}\bigg[ \dfrac{ \sqrt[In2]{ {x}^{2} {e}^{x} }\sin^{\pi}x }{Inx \: [x{tan}^{ - 1}x -  \frac{1}{2}log | {x}^{2} + 1 |]}\bigg]

We know,

\boxed{ \tt{ \: \dfrac{d}{dx}k \:  =  \: 0 \: }}

So,

\rm :\longmapsto\:\dfrac{d}{dy}f(x) = 0

Hence,

 \red{\rm \implies\:\boxed{ \tt{ \: \dfrac{d}{dy}\:\dfrac{ \sqrt[In2]{ {x}^{2} {e}^{x} }\sin^{\pi}x }{Inx \: \int^{x}_{0} { \tan}^{ - 1}y \: dy }  \: = \:  0 \: }}}

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

More to know :-

\begin{gathered}\boxed{\begin{array}{c|c} \bf f(x) & \bf \dfrac{d}{dx}f(x) \\ \\  \frac{\qquad \qquad}{} & \frac{\qquad \qquad}{} \\ \sf k & \sf 0 \\ \\ \sf sinx & \sf cosx \\ \\ \sf cosx & \sf  -  \: sinx \\ \\ \sf tanx & \sf  {sec}^{2}x \\ \\ \sf cotx & \sf  -  {cosec}^{2}x \\ \\ \sf secx & \sf secx \: tanx\\ \\ \sf cosecx & \sf  -  \: cosecx \: cotx\\ \\ \sf  \sqrt{x}  & \sf  \dfrac{1}{2 \sqrt{x} } \\ \\ \sf logx & \sf \dfrac{1}{x}\\ \\ \sf  {e}^{x}  & \sf  {e}^{x}  \end{array}} \\ \end{gathered}

 \red{\begin{gathered}\begin{gathered}\boxed{\begin{array}{c|c} \bf f(x) & \bf \displaystyle \int \rm \:f(x) \: dx\\ \\ \frac{\qquad \qquad}{} & \frac{\qquad \qquad}{} \\ \sf k & \sf kx + c \\ \\ \sf sinx & \sf - \: cosx+ c \\ \\ \sf cosx & \sf \: sinx + c\\ \\ \sf {sec}^{2} x & \sf tanx + c\\ \\ \sf {cosec}^{2}x & \sf - cotx+ c \\ \\ \sf secx \: tanx & \sf secx + c\\ \\ \sf cosecx \: cotx& \sf - \: cosecx + c\\ \\ \sf tanx & \sf logsecx + c\\ \\ \sf \dfrac{1}{x} & \sf logx+ c\\ \\ \sf {e}^{x} & \sf {e}^{x} + c\end{array}} \\ \end{gathered}\end{gathered}}

Similar questions