Math, asked by Anonymous, 9 hours ago

\displaystyle \huge \bold \red{\int  \sqrt{ \tan x}  \: dx}

Answers

Answered by Anonymous
7

Answer:

Answer is in attachment

Hope it helps

Attachments:
Answered by sajan6491
6

\displaystyle  \bold \red{\int \sqrt{ \tan x} \: dx}

\displaystyle  \bold \red{ Let  \: u , = \sqrt{ \tan x}}

\displaystyle  \bold \red{  \: u {}^{2} = { \tan x}}

\displaystyle  \bold \red{  \: u {}^{4} = { \tan^{2} x}}

\displaystyle  \bold \red{  \: u {}^{4} = { \sec^{2} x - 1}}

 \bold \red{u^4+1=sec {}^{2} x }

 \bold \red{Since, 2udu=sec^2x \: dx}

 \bold \red{dx =  \frac{2udu}{ \sec^{2}x } }

 \bold \red{dx =  \frac{2udu}{ u^{4} + 1 } }

{\displaystyle  \bold \red{ \Rightarrow\int \sqrt{ \tan x} \: dx =  \int u \frac{2u}{ {u}^{4}  + 1 }  du}}

{\displaystyle  \bold \red{ \Rightarrow  \int \frac{2u {}^{2} }{ {u}^{4}  + 1 }  du}}

Since, the power is very high, we need to reduce it.

{\displaystyle  \bold \red{ \Rightarrow  \int \frac{2u {}^{2} }{ {u}^{4}  + 1 }  du =  \int \frac{ \frac{2 {u}^{2} }{ {u}^{2} } }{ \frac{ {u}^{4} }{ {u}^{2} } +  \frac{1}{ {u}^{2} } }du =  \int \frac{2}{ {u}^{2} +  \frac{1}{ {u}^{2} }  }  du }}

 \bold \red{Since,  {u}^{2}  +  \frac{1}{ {u}^{2} }  = ( {u})^{2}  + ( \frac{1}{u} ) {}^{2} }

{  \bold \red{=  {u}^{2}  + (2u)( \frac{1}{u} ) + ( \frac{1}{u} ) {}^{2}  - 2(u)( \frac{1}{u} )}}

 \bold \red{ = (u +  \frac{1}{u} ) {}^{2}  - 2}

{ \displaystyle{ \bold \red{ \implies  \int \frac{1 -  \frac{1}{ {u}^{2} } }{(u +  \frac{1}{u}) {}^{2}   - 2} du +  \int \frac{1 +  \frac{1}{ {u}^{2} } }{(u -  \frac{1}{u}) {}^{2} + 2  }du }}}

{ \bold \red{Let, z=u+ \frac{1}{u}  , dz = (1 -  \frac{1}{ {u}^{2} })du }}

 \bold \red{y=u− \frac{1}{u}  ,dy=(1+ \frac{1}{ {u}^{2} } )du}

{ \displaystyle{ \bold \red{ \implies  \int \frac{1}{ {z}^{2}  - 2} dz +  \int \frac{1}{ {y}^{2}  + 2}  dy}}}

{ \displaystyle{ \bold \red{ \implies  \int \frac{1}{ {z}^{2}  - ( \sqrt{2}) {}^{2}  } dz +  \int \frac{1}{ {y}^{2}  + ( \sqrt{2} ) {}^{2} }  dy}}}

 { \bold \red {Since,  \displaystyle \int \frac{1}{ {a}^{2} -  {b}^{2} } dx =  -  \frac{ \tanh {}^{ - 1}  \frac{a}{b} }{b}  + C}}

 { \bold \red {and,  \displaystyle \int \frac{1}{ {a}^{2}  +   {b}^{2} } dx =  \frac{ \tanh {}^{ - 1}  \frac{a}{b} }{b}  + C}}

 {\bold \red{⇒ \frac{ - 1}{ \sqrt{2} }  \tanh {}^{ - 1}  (\frac{z {}^{}  }{ \sqrt{2} }  )+  \frac{1}{ \sqrt{2} }  \tan {}^{ - 1}  ( \frac{y }{ \sqrt{2} } )}}

 {\bold \red{⇒ \frac{ - 1}{ \sqrt{2} }  \tanh {}^{ - 1}  \frac{(u +  \frac{1}{u}) {}^{}  }{ \sqrt{2} }  +  \frac{1}{ \sqrt{2} }  \tan {}^{ - 1}   \frac{(u -  \frac{1}{u}) }{ \sqrt{2} } }}

 {\bold \red{⇒ \frac{ - 1}{ \sqrt{2} }  \tanh {}^{ - 1}( \frac{  \sqrt{\tan x}  +  \sqrt{ \cot x} }{2}) +  \frac{1}{ \sqrt{2} }  \tan {}^{ - 1} ( \frac{ \sqrt{ \tan x}  -  \sqrt{ \cot x} }{ \sqrt{2} }   ) +C }}

Similar questions