Math, asked by saichavan, 6 days ago

 \displaystyle\huge\green{ \sf\int \: \sqrt{ \cot \: x} \: dx}
 \sf \: Evaluate \: using \: substitution \: method.

 \huge \red{ \sf\: No \: Spam!}

Answers

Answered by mathdude500
25

\large\underline{\sf{Solution-}}

Given integral is

\displaystyle\int\rm  \sqrt{cotx}  \: dx \\

To evaluate this integral, we substitute

\rm \:  \sqrt{cotx} = y \\

\rm \: cotx =  {y}^{2}

\rm \:  -  {cosec}^{2}x dx\:  =  \: 2y \: dy \\

\rm \:  -  (1 + {cot}^{2}x )dx\:  =  \: 2y \: dy \\

\rm \:  -  (1 +  {y}^{4})dx\:  =  \: 2y \: dy \\

\rm \: dx \:  =  \:  - \dfrac{2y}{ {y}^{4}  + 1}  \: dy \\

On substituting all these values in given integral, we get

\rm \:  = -  \:  \displaystyle\int\rm y \times  \frac{2y}{ {y}^{4}  + 1}  \: dy \\

\rm \:  = -  \:  \displaystyle\int\rm \frac{2 {y}^{2} }{ {y}^{4}  + 1}  \: dy \\

\rm \:  = -  \:  \displaystyle\int\rm \frac{{y}^{2}  +  {y}^{2} }{ {y}^{4}  + 1}  \: dy \\

\rm \:  = -  \:  \displaystyle\int\rm \frac{{y}^{2}  +  {y}^{2}  + 1 - 1}{ {y}^{4}  + 1}  \: dy \\

\rm \:  = -  \:  \displaystyle\int\rm \frac{{y}^{2}+1}{ {y}^{4}  + 1}dy -\displaystyle\int\rm \frac{{y}^{2} - 1}{ {y}^{4}  + 1}dy  \\

On divide numerator and denominator by y^2 in both integrals, we have

\rm \:  = -  \displaystyle\int\rm  \frac{1 +  \dfrac{1}{ {y}^{2} } }{ {y}^{2}  +  \dfrac{1}{ {y}^{2} } }dy -  \displaystyle\int\rm  \frac{1 - \dfrac{1}{ {y}^{2} } }{ {y}^{2}+\dfrac{1}{ {y}^{2} } }dy \\

\rm \:  = -  \displaystyle\int\rm  \frac{1 +  \dfrac{1}{ {y}^{2} } }{ {\bigg(y - \dfrac{1}{y} \bigg) }^{2}  + 2}dy -  \displaystyle\int\rm  \frac{1 - \dfrac{1}{ {y}^{2} } }{  {\bigg(y  +  \dfrac{1}{y} \bigg) }^{2} -  2 }dy \\

Now, to evaluate further these integrals, we substitute

\rm \: y - \dfrac{1}{y} = u \:  \: and \:  \: y  + \dfrac{1}{y} = v \\

\rm \: \bigg(1  +  \dfrac{1}{ {y}^{2} }\bigg)dy= du \:  \: and \:  \: \bigg(1 -  \dfrac{1}{ {y}^{2} }\bigg)dy = dv \\

So, on substituting these values in above integral, we get

\rm \:  =  - \displaystyle\int\rm  \frac{du}{ {u}^{2}  +  (\sqrt{2})^{2} } - \displaystyle\int\rm  \frac{dv}{ {v}^{2}  -  {( \sqrt{2} )}^{2} }  \\

\rm \:  =  - \dfrac{1}{ \sqrt{2} } {tan}^{ - 1} \dfrac{u}{ \sqrt{2} } - \dfrac{1}{2 \sqrt{2} }log\bigg |\dfrac{v -  \sqrt{2} }{v +  \sqrt{2} } \bigg|  + c \\

\rm \:  =  - \dfrac{1}{ \sqrt{2} } {tan}^{ - 1} \dfrac{y - \dfrac{1}{y}}{ \sqrt{2} } - \dfrac{1}{2 \sqrt{2} }log\bigg |\dfrac{y +  \dfrac{1}{y} -  \sqrt{2} }{y + \dfrac{1}{y} +  \sqrt{2} } \bigg|  + c \\

\rm \:  =  - \dfrac{1}{ \sqrt{2} } {tan}^{ - 1} \dfrac{ {y}^{2}  - 1}{ \sqrt{2} y} - \dfrac{1}{2 \sqrt{2} }log\bigg |\dfrac{ {y}^{2} + 1  -  \sqrt{2} y}{ {y}^{2} + 1 +  \sqrt{2}y } \bigg|  + c \\

\rm \:  =  - \dfrac{1}{ \sqrt{2} } {tan}^{ - 1} \dfrac{cotx  - 1}{ \sqrt{2}  \sqrt{cotx} } - \dfrac{1}{2 \sqrt{2} }log\bigg |\dfrac{cotx + 1  -  \sqrt{2}  \sqrt{cotx} }{cotx + 1 +  \sqrt{2} \sqrt{cotx} } \bigg|  + c \\

Hence,

\color{green}\rm\implies \:\displaystyle\int\rm  \sqrt{cotx} \: dx \\   \\ \color{green}\rm \:  =  - \dfrac{1}{ \sqrt{2} } {tan}^{ - 1} \dfrac{cotx  - 1}{ \sqrt{2}  \sqrt{cotx} } - \dfrac{1}{2 \sqrt{2} }log\bigg |\dfrac{cotx + 1  -  \sqrt{2}  \sqrt{cotx} }{cotx + 1 +  \sqrt{2} \sqrt{cotx} } \bigg|  + c \\

\rule{190pt}{2pt}

Formulae Used :-

\boxed{ \rm{ \:\rm \:  \frac{d}{dx} {x}^{n} \:  =  \:  {nx}^{n - 1} \: }} \\

\boxed{ \rm{ \:\rm \:  \frac{d}{dx} k \:  =  \:  0 \: }} \\

\boxed{ \rm{ \:\rm \:  \frac{d}{dx} cotx \:  =  \:   -  \:  {cosec}^{2}x \: }} \\

\boxed{ \rm{ \: {cosec}^{2}x -  {cot}^{2}x = 1 \: }} \\

\boxed{ \rm{ \: {x}^{2} +  {y}^{2} =  {(x + y)}^{2} - 2xy =  {(x - y)}^{2} + 2xy \: }} \\

\boxed{ \rm{ \:\displaystyle\int\rm  \frac{dx}{ {x}^{2}  +  {a}^{2} } =  \frac{1}{a} {tan}^{ - 1} \frac{x}{a} + c \: }} \\

\boxed{ \rm{ \:\displaystyle\int\rm  \frac{dx}{ {x}^{2} - {a}^{2} } =  \frac{1}{2a} log\bigg | \frac{x - a}{x + a} \bigg|  + c \: }} \\

Answered by Anonymous
2

Answer:

\large\underline{\sf{Solution-}}

Given integral is

\displaystyle\int\rm  \sqrt{cotx}  \: dx \\

To evaluate this integral, we substitute

\rm \:  \sqrt{cotx} = y \\

\rm \: cotx =  {y}^{2}

\rm \:  -  {cosec}^{2}x dx\:  =  \: 2y \: dy \\

\rm \:  -  (1 + {cot}^{2}x )dx\:  =  \: 2y \: dy \\

\rm \:  -  (1 +  {y}^{4})dx\:  =  \: 2y \: dy \\

\rm \: dx \:  =  \:  - \dfrac{2y}{ {y}^{4}  + 1}  \: dy \\

On substituting all these values in given integral, we get

\rm \:  = -  \:  \displaystyle\int\rm y \times  \frac{2y}{ {y}^{4}  + 1}  \: dy \\

\rm \:  = -  \:  \displaystyle\int\rm \frac{2 {y}^{2} }{ {y}^{4}  + 1}  \: dy \\

\rm \:  = -  \:  \displaystyle\int\rm \frac{{y}^{2}  +  {y}^{2} }{ {y}^{4}  + 1}  \: dy \\

\rm \:  = -  \:  \displaystyle\int\rm \frac{{y}^{2}  +  {y}^{2}  + 1 - 1}{ {y}^{4}  + 1}  \: dy \\

\rm \:  = -  \:  \displaystyle\int\rm \frac{{y}^{2}+1}{ {y}^{4}  + 1}dy -\displaystyle\int\rm \frac{{y}^{2} - 1}{ {y}^{4}  + 1}dy  \\

On divide numerator and denominator by y^2 in both integrals, we have

\rm \:  = -  \displaystyle\int\rm  \frac{1 +  \dfrac{1}{ {y}^{2} } }{ {y}^{2}  +  \dfrac{1}{ {y}^{2} } }dy -  \displaystyle\int\rm  \frac{1 - \dfrac{1}{ {y}^{2} } }{ {y}^{2}+\dfrac{1}{ {y}^{2} } }dy \\

\rm \:  = -  \displaystyle\int\rm  \frac{1 +  \dfrac{1}{ {y}^{2} } }{ {\bigg(y - \dfrac{1}{y} \bigg) }^{2}  + 2}dy -  \displaystyle\int\rm  \frac{1 - \dfrac{1}{ {y}^{2} } }{  {\bigg(y  +  \dfrac{1}{y} \bigg) }^{2} -  2 }dy \\

Now, to evaluate further these integrals, we substitute

\rm \: y - \dfrac{1}{y} = u \:  \: and \:  \: y  + \dfrac{1}{y} = v \\

\rm \: \bigg(1  +  \dfrac{1}{ {y}^{2} }\bigg)dy= du \:  \: and \:  \: \bigg(1 -  \dfrac{1}{ {y}^{2} }\bigg)dy = dv \\

So, on substituting these values in above integral, we get

\rm \:  =  - \displaystyle\int\rm  \frac{du}{ {u}^{2}  +  (\sqrt{2})^{2} } - \displaystyle\int\rm  \frac{dv}{ {v}^{2}  -  {( \sqrt{2} )}^{2} }  \\

\rm \:  =  - \dfrac{1}{ \sqrt{2} } {tan}^{ - 1} \dfrac{u}{ \sqrt{2} } - \dfrac{1}{2 \sqrt{2} }log\bigg |\dfrac{v -  \sqrt{2} }{v +  \sqrt{2} } \bigg|  + c \\

\rm \:  =  - \dfrac{1}{ \sqrt{2} } {tan}^{ - 1} \dfrac{y - \dfrac{1}{y}}{ \sqrt{2} } - \dfrac{1}{2 \sqrt{2} }log\bigg |\dfrac{y +  \dfrac{1}{y} -  \sqrt{2} }{y + \dfrac{1}{y} +  \sqrt{2} } \bigg|  + c \\

\rm \:  =  - \dfrac{1}{ \sqrt{2} } {tan}^{ - 1} \dfrac{ {y}^{2}  - 1}{ \sqrt{2} y} - \dfrac{1}{2 \sqrt{2} }log\bigg |\dfrac{ {y}^{2} + 1  -  \sqrt{2} y}{ {y}^{2} + 1 +  \sqrt{2}y } \bigg|  + c \\

\rm \:  =  - \dfrac{1}{ \sqrt{2} } {tan}^{ - 1} \dfrac{cotx  - 1}{ \sqrt{2}  \sqrt{cotx} } - \dfrac{1}{2 \sqrt{2} }log\bigg |\dfrac{cotx + 1  -  \sqrt{2}  \sqrt{cotx} }{cotx + 1 +  \sqrt{2} \sqrt{cotx} } \bigg|  + c \\

Hence,

\color{green}\rm\implies \:\displaystyle\int\rm  \sqrt{cotx} \: dx \\   \\ \color{green}\rm \:  =  - \dfrac{1}{ \sqrt{2} } {tan}^{ - 1} \dfrac{cotx  - 1}{ \sqrt{2}  \sqrt{cotx} } - \dfrac{1}{2 \sqrt{2} }log\bigg |\dfrac{cotx + 1  -  \sqrt{2}  \sqrt{cotx} }{cotx + 1 +  \sqrt{2} \sqrt{cotx} } \bigg|  + c \\

\rule{190pt}{2pt}

Formulae Used :-

\boxed{ \rm{ \:\rm \:  \frac{d}{dx} {x}^{n} \:  =  \:  {nx}^{n - 1} \: }} \\

\boxed{ \rm{ \:\rm \:  \frac{d}{dx} k \:  =  \:  0 \: }} \\

\boxed{ \rm{ \:\rm \:  \frac{d}{dx} cotx \:  =  \:   -  \:  {cosec}^{2}x \: }} \\

\boxed{ \rm{ \: {cosec}^{2}x -  {cot}^{2}x = 1 \: }} \\

\boxed{ \rm{ \: {x}^{2} +  {y}^{2} =  {(x + y)}^{2} - 2xy =  {(x - y)}^{2} + 2xy \: }} \\

\boxed{ \rm{ \:\displaystyle\int\rm  \frac{dx}{ {x}^{2}  +  {a}^{2} } =  \frac{1}{a} {tan}^{ - 1} \frac{x}{a} + c \: }} \\

\boxed{ \rm{ \:\displaystyle\int\rm  \frac{dx}{ {x}^{2} - {a}^{2} } =  \frac{1}{2a} log\bigg | \frac{x - a}{x + a} \bigg|  + c \: }} \\

Similar questions