Math, asked by ItzArchimedes, 4 months ago

 \\ \displaystyle\Huge\int\sf\tiny\dfrac{\Big\{cos^{-1}x\big[\sqrt{(1-x^2)}\:\big]\Big\}^{-1}}{log_{e}\left\{1+\left[\dfrac{sin\left\lgroup 2x\sqrt{(1-x^2)}\right\rgroup}{\boldsymbol\pi}\right]\right\}}dx

Solve the above question !
• No spam .
• Quality answers and neatly well explained answers will be approved.
• Spammed answers will be deleted on the spot .
• If the question is not appearing , kindly see the answer from web .
• Don't copy from internet .​

Answers

Answered by RockingStarPratheek
386

Answer :

\sf{\displaystyle\frac{2}{\pi} \log_{e}\left(\log _{e}\left(\frac{\pi+2 \theta}{\pi}\right)\right)}

Step by Step Explanation :

\sf{\int \dfrac{\left\{\cos ^{-1} x\left[\sqrt{\left(1-x^{2}\right)}\right]\right\}^{-1}}{\log_e \left\{1+\left[\frac{\sin \left(2 x \sqrt{\left(1-x^{2}\right)}\right)}{\pi}\right]\right)} d x}

➳ Put x = sinθ

∴ dx = cosθ dθ

\therefore\sf{cos^{-1}x\cdot \left\{\sqrt{1-x^2}\right\}=cos^{-1}\left(sin\theta \right)\cdot  \left\{\sqrt{1-x^2}\right\} }

\to\sf{cos^{-1}x\cdot \left\{\sqrt{1-x^2}\right\}=cos^{-1}\left(sin\theta \right)\cdot  \left\{\sqrt{1-\sin ^2\theta}\right\} }

\to\sf{cos^{-1}x\cdot \left\{\sqrt{1-x^2}\right\}=cos^{-1}\left(sin\theta \right)\cdot  \left\{\sqrt{\cos ^2\left(\theta\right)}}\right\} }

\to\sf{cos^{-1}x\cdot \left\{\sqrt{1-x^2}\right\}=cos^{-1}\left(sin\theta \right)\cdot  \cos \left(\theta\right) }

\to\sf{cos^{-1}x\cdot \left\{\sqrt{1-x^2}\right\}=\cos \:^{-1}\left(\cos \:\left(\dfrac{\pi }{2}+\theta \:\right)\right)\:\cdot \:\cos \theta }

\to\sf{cos^{-1}x\cdot \left\{\sqrt{1-x^2}\right\}=\:\left(\dfrac{\pi \:}{2}+\theta \:\right)\:\cdot \:\cos \theta }

Also

\sf{\sin ^{-1}\left(2 x \sqrt{1-2 x^{2}}\right)=\sin ^{-1}(2 \sin \theta \cos \theta)}

\to\sf{\sin ^{-1}\left(2 x \sqrt{1-2 x^{2}}\right)=sin^{-1}\left(sin2\theta \right)}

\to\sf{\sin ^{-1}\left(2 x \sqrt{1-2 x^{2}}\right)=2\theta}

Now

\sf{\int \dfrac{\left\{\cos ^{-1} x\left[\sqrt{\left(1-x^{2}\right)}\right]\right\}^{-1}}{\log_e \left\{1+\left[\frac{\sin \left(2 x \sqrt{\left(1-x^{2}\right)}\right)}{\pi}\right]\right)} d x}

\sf{=\displaystyle\int \frac{\left(\cos ^{-1} \sin \theta \sqrt{1-\sin ^{2} \theta}\right)^{-1}}{log_e \left(1+\frac{2 \theta}{\pi}\right)} \cos \theta d \theta}

\sf{\displaystyle=\int\frac{\left(\frac{\pi }{2}+\theta\right)^{-1}\:\cdot \:\cos \:^{-1}\:\theta \:\cdot \:\cos \:\theta \:d\:\theta }{\log _e\left(\frac{\pi +2\:\theta }{\pi }\right)}}

\sf{\displaystyle=\int \:\frac{2d\theta }{\left(\pi +2\theta \right)\:\log_e\left(\frac{\pi +2\theta }{\pi }\right)}}

➳ Put  \sf{log\left(\dfrac{\pi +2\theta }{\pi }\right)=t}

\to\sf{\dfrac{\pi}{\pi+2 \theta} d \theta=d t}

\to\sf{\dfrac{2}{\pi} \int \dfrac{d t}{t}}

\to\sf{\dfrac{2}{\pi} \log (t)}

➳Substitute back the Value of t

\to\sf{\displaystyle\frac{2}{\pi} \log_{e}\left(\log _{e}\left(\frac{\pi+2 \theta}{\pi}\right)\right)}

\boxed{\boxed{\therefore\:\:\sf{\int \dfrac{\left\{\cos ^{-1} x\left[\sqrt{\left(1-x^{2}\right)}\right]\right\}^{-1}}{\log_e \left\{1+\left[\frac{\sin \left(2 x \sqrt{\left(1-x^{2}\right)}\right)}{\pi}\right]\right)} d x}=\sf{\displaystyle\frac{2}{\pi} \log_{e}\left(\log _{e}\left(\frac{\pi+2 \theta}{\pi}\right)\right)}}}


Glorious31: Awesome !!
TheValkyrie: Great
Anonymous: Amazing!
MisterIncredible: Good
amitkumar44481: Good :-)
ItzArchimedes: nice !
thapaavinitika6765: Greattt Answer !! :)
Answered by pulakmath007
22

SOLUTION

TO EVALUATE

\displaystyle \sf{ \int\limits_{}^{}  \frac{{ \bigg[  { \cos}^{ - 1}x( \sqrt{1 -  {x}^{2} } ) \bigg]}^{ - 1} }{ \log  \:  \{ \: 1 +   \frac{ { \sin}^{ - 1}  (2x \sqrt{1 -  {x}^{2} } )}{\pi}  \}}  \, dx }

EVALUATION

Let I be the given Integral

Then

\displaystyle \sf{I =  \int\limits_{}^{}  \frac{{ \bigg[  { \cos}^{ - 1}x( \sqrt{1 -  {x}^{2} } ) \bigg]}^{ - 1} }{ \log  \:  \{ \: 1 +   \frac{ { \sin}^{ - 1}  (2x \sqrt{1 -  {x}^{2} } )}{\pi}  \}}  \, dx }

Let x = sin θ

then dx = cos θ dθ

Then the given Integral becomes

\displaystyle \sf{I =  \int\limits_{}^{}  \frac{{ \bigg[  { \cos}^{ - 1}x( \sqrt{1 -  {x}^{2} } ) \bigg]}^{ - 1} }{ \log  \:  \{ \: 1 +   \frac{ { \sin}^{ - 1}  (2x \sqrt{1 -  {x}^{2} } )}{\pi}  \}}  \, dx }

\displaystyle \sf{ \implies \: I =  \int\limits_{}^{}  \frac{{ \bigg[  { \cos}^{ - 1}( \sin \theta)( \sqrt{1 -  {\sin }^{2} \theta } ) \bigg]}^{ - 1} }{ \log  \:  \{ \: 1 +   \frac{ { \sin}^{ - 1}  (2\sin \theta \sqrt{1 -  { \sin}^{2} \theta } )}{\pi}  \}}  \,  \cos \theta d \theta }

\displaystyle \sf{ \implies \: I =  \int\limits_{}^{}  \frac{{ \bigg[  { \cos}^{ - 1}( \cos \bigg(  \frac{\pi}{2} +  \theta \bigg)(  {\cos }^{} \theta  ) \bigg]}^{ - 1} }{ \log  \:  \{ \: 1 +   \frac{ { \sin}^{ - 1}  (2\sin \theta  \cos\theta )}{\pi}  \}}  \,  \cos \theta d \theta }

\displaystyle \sf{ \implies \: I =  \int\limits_{}^{}  \frac{{ \bigg[  \bigg(  \frac{\pi}{2} +  \theta \bigg)\bigg]}^{ - 1} }{  {\cos }^{} \theta  \: \log  \:  \{ \: 1 +   \frac{ { \sin}^{ - 1}  (\sin 2\theta   )}{\pi}  \}}  \,  \cos \theta d \theta }

\displaystyle \sf{ \implies \: I =  \int\limits_{}^{}  \frac{{   \bigg(  \frac{\pi}{2} +  \theta \bigg)}^{ - 1} }{    \: \log  \:  \bigg(\: 1 +   \frac{ 2\theta }{\pi}  \bigg)}  \,  d \theta }

\displaystyle \sf{ \implies \: I =  \frac{2}{\pi}  \int\limits_{}^{}  \frac{{   \bigg( 1 +   \frac{ 2\theta }{\pi}  \bigg)}^{ - 1} }{    \: \log  \:  \bigg(\: 1 +   \frac{ 2\theta }{\pi}  \bigg)}  \,  d \theta }

\displaystyle \sf{ \implies \: I =  \frac{2}{\pi}  \int\limits_{}^{}  \frac{{ 1 }^{ } }{  \bigg( 1 +   \frac{ 2\theta }{\pi}  \bigg)  \: \log  \:  \bigg(\: 1 +   \frac{ 2\theta }{\pi}  \bigg)}  \,  d \theta }

\displaystyle \sf{ Let \:  \: y = \log \bigg(\: 1 +   \frac{ 2\theta }{\pi}  \bigg) \:  \: then \:  \: dy =  \frac{2}{\pi}  \frac{1}{\bigg(\: 1 +   \frac{ 2\theta }{\pi}  \bigg)} d \theta }

Now from above we get

\displaystyle \sf{ \implies \: I =    \int\limits_{}^{}  \frac{1 }{   \:y}  \,  dy }

\displaystyle \sf{ \implies \: I = \log  |y| + c \:  }

\displaystyle \sf{ \implies \: I = \log   \bigg|\log \bigg(\: 1 +   \frac{ 2\theta }{\pi}  \bigg) \bigg| + c \:  }

\displaystyle \sf{ \implies \: I = \log   \bigg|\log \bigg(\: 1 +   \frac{ 2 { \sin}^{ - 1}x  }{\pi}  \bigg) \bigg| + c \:  }

Where C is integration constant

FINAL ANSWER

\displaystyle \sf{ \int\limits_{}^{}  \frac{{ \bigg[  { \cos}^{ - 1}x( \sqrt{1 -  {x}^{2} } ) \bigg]}^{ - 1} }{ \log  \:  \{ \: 1 +   \frac{ { \sin}^{ - 1}  (2x \sqrt{1 -  {x}^{2} } )}{\pi}  \}}  \, dx }\displaystyle \sf{  = \log   \bigg|\log \bigg(\: 1 +   \frac{ 2 { \sin}^{ - 1}x  }{\pi}  \bigg) \bigg| + c \:  }

━━━━━━━━━━━━━━━━

Learn more from Brainly :-

1. find integration of e2x-epower -2x / e2x +epower-2x dx

https://brainly.in/question/31921167

2. Cos^-1(1-9^x/1+9^x) differentiate with respect to x

https://brainly.in/question/17839008

3. Integral (7cos^3x+8sin^3x)÷3sin^2xcos^2x

https://brainly.in/question/19287036

Similar questions