Solve the above question !
• No spam .
• Quality answers and neatly well explained answers will be approved.
• Spammed answers will be deleted on the spot .
• If the question is not appearing , kindly see the answer from web .
• Don't copy from internet .
Answers
Answer:
Answer :
Step by Step Explanation :
➳ Put x = sinθ
∴ dx = cosθ dθ
Also
Now
➳ Put
➳Substitute back the Value of t
Answer:
2
log
e
(log
e
(
π
π+2θ
))
Step by Step Explanation :
\sf{\int \dfrac{\left\{\cos ^{-1} x\left[\sqrt{\left(1-x^{2}\right)}\right]\right\}^{-1}}{\log_e \left\{1+\left[\frac{\sin \left(2 x \sqrt{\left(1-x^{2}\right)}\right)}{\pi}\right]\right)} d x}∫
log
e
{1+[
π
sin(2x
(1−x
2
)
)
])
{cos
−1
x[
(1−x
2
)
]}
−1
dx
➳ Put x = sinθ
∴ dx = cosθ dθ
\therefore\sf{cos^{-1}x\cdot \left\{\sqrt{1-x^2}\right\}=cos^{-1}\left(sin\theta \right)\cdot \left\{\sqrt{1-x^2}\right\} }∴cos
−1
x⋅{
1−x
2
}=cos
−1
(sinθ)⋅{
1−x
2
}
\to\sf{cos^{-1}x\cdot \left\{\sqrt{1-x^2}\right\}=cos^{-1}\left(sin\theta \right)\cdot \left\{\sqrt{1-\sin ^2\theta}\right\} }→cos
−1
x⋅{
1−x
2
}=cos
−1
(sinθ)⋅{
1−sin
2
θ
}
\to\sf{cos^{-1}x\cdot \left\{\sqrt{1-x^2}\right\}=cos^{-1}\left(sin\theta \right)\cdot \left\{\sqrt{\cos ^2\left(\theta\right)}}\right\} }
\to\sf{cos^{-1}x\cdot \left\{\sqrt{1-x^2}\right\}=cos^{-1}\left(sin\theta \right)\cdot \cos \left(\theta\right) }→cos
−1
x⋅{
1−x
2
}=cos
−1
(sinθ)⋅cos(θ)
\to\sf{cos^{-1}x\cdot \left\{\sqrt{1-x^2}\right\}=\cos \:^{-1}\left(\cos \:\left(\dfrac{\pi }{2}+\theta \:\right)\right)\:\cdot \:\cos \theta }→cos
−1
x⋅{
1−x
2
}=cos
−1
(cos(
2
π
+θ))⋅cosθ
\to\sf{cos^{-1}x\cdot \left\{\sqrt{1-x^2}\right\}=\:\left(\dfrac{\pi \:}{2}+\theta \:\right)\:\cdot \:\cos \theta }→cos
−1
x⋅{
1−x
2
}=(
2
π
+θ)⋅cosθ
Also
\sf{\sin ^{-1}\left(2 x \sqrt{1-2 x^{2}}\right)=\sin ^{-1}(2 \sin \theta \cos \theta)}sin
−1
(2x
1−2x
2
)=sin
−1
(2sinθcosθ)
\to\sf{\sin ^{-1}\left(2 x \sqrt{1-2 x^{2}}\right)=sin^{-1}\left(sin2\theta \right)}→sin
−1
(2x
1−2x
2
)=sin
−1
(sin2θ)
\to\sf{\sin ^{-1}\left(2 x \sqrt{1-2 x^{2}}\right)=2\theta}→sin
−1
(2x
1−2x
2
)=2θ
Now
\sf{\int \dfrac{\left\{\cos ^{-1} x\left[\sqrt{\left(1-x^{2}\right)}\right]\right\}^{-1}}{\log_e \left\{1+\left[\frac{\sin \left(2 x \sqrt{\left(1-x^{2}\right)}\right)}{\pi}\right]\right)} d x}∫
log
e
{1+[
π
sin(2x
(1−x
2
)
)
])
{cos
−1
x[
(1−x
2
)
]}
−1
dx
\sf{=\displaystyle\int \frac{\left(\cos ^{-1} \sin \theta \sqrt{1-\sin ^{2} \theta}\right)^{-1}}{log_e \left(1+\frac{2 \theta}{\pi}\right)} \cos \theta d \theta}=∫
log
e
(1+
π
2θ
)
(cos
−1
sinθ
1−sin
2
θ
)
−1
cosθdθ
\sf{\displaystyle=\int\frac{\left(\frac{\pi }{2}+\theta\right)^{-1}\:\cdot \:\cos \:^{-1}\:\theta \:\cdot \:\cos \:\theta \:d\:\theta }{\log _e\left(\frac{\pi +2\:\theta }{\pi }\right)}}=∫
log
e
(
π
π+2θ
)
(
2
π
+θ)
−1
⋅cos
−1
θ⋅cosθdθ
\sf{\displaystyle=\int \:\frac{2d\theta }{\left(\pi +2\theta \right)\:\log_e\left(\frac{\pi +2\theta }{\pi }\right)}}=∫
(π+2θ)log
e
(
π
π+2θ
)
2dθ
➳ Put \sf{log\left(\dfrac{\pi +2\theta }{\pi }\right)=t}log(
π
π+2θ
)=t
\to\sf{\dfrac{\pi}{\pi+2 \theta} d \theta=d t}→
π+2θ
π
dθ=dt
\to\sf{\dfrac{2}{\pi} \int \dfrac{d t}{t}}→
π
2
∫
t
dt
\to\sf{\dfrac{2}{\pi} \log (t)}→
π
2
log(t)
➳Substitute back the Value of t
\to\sf{\displaystyle\frac{2}{\pi} \log_{e}\left(\log _{e}\left(\frac{\pi+2 \theta}{\pi}\right)\right)}→
π
2
log
e
(log
e
(
π
π+2θ
))
\boxed{\boxed{\therefore\:\:\sf{\int \dfrac{\left\{\cos ^{-1} x\left[\sqrt{\left(1-x^{2}\right)}\right]\right\}^{-1}}{\log_e \left\{1+\left[\frac{\sin \left(2 x \sqrt{\left(1-x^{2}\right)}\right)}{\pi}\right]\right)} d x}=\sf{\displaystyle\frac{2}{\pi} \log_{e}\left(\log _{e}\left(\frac{\pi+2 \theta}{\pi}\right)\right)}}}
∴∫
log
e
{1+[
π
sin(2x
(1−x
2
)
)
])
{cos
−1
x[
(1−x
2
)
]}
−1
dx=
π
2
log
e
(log
e
(
π
π+2θ
))