![\displaystyle\huge\red{\underline{\underline{QUESTION}}} \displaystyle\huge\red{\underline{\underline{QUESTION}}}](https://tex.z-dn.net/?f=%5Cdisplaystyle%5Chuge%5Cred%7B%5Cunderline%7B%5Cunderline%7BQUESTION%7D%7D%7D)
★PROVE★
![\sqrt{ \frac{1 + \sin( \alpha ) }{1 - \sin( \alpha ) } } = tan \alpha + sec \alpha \sqrt{ \frac{1 + \sin( \alpha ) }{1 - \sin( \alpha ) } } = tan \alpha + sec \alpha](https://tex.z-dn.net/?f=+%5Csqrt%7B+%5Cfrac%7B1+%2B++%5Csin%28+%5Calpha+%29+%7D%7B1+-++%5Csin%28+%5Calpha+%29+%7D+%7D++%3D+tan+%5Calpha++%2B+sec+%5Calpha+)
COPIED ANSWERS NOT ALLOWED
Answers
Answered by
1
Answer:
srry dear I have problem with the connection
Answered by
10
Answer:
To prove .
1−sin(α)
1+sin(α)
=tanα+secα
(1 - Sin @/1+sina @)
(1- Sin @ )² (1-sin²@)
1+sin²A-2sinA/ cos²A
sec²A + tan² A - 2 tanA.secA
So , (sec @ - tan @)²
Square root of LHS = sec@ - tan@
Similar questions