Math, asked by Anonymous, 1 day ago

\displaystyle \huge \tt  \color {green}\int_{0}^{\pi}  \tan ^{ - 1}  \bigg(20 {21}^{cosx} \bigg )  \: dx

Answers

Answered by senboni123456
14

Step-by-step explanation:

We have,

\displaystyle \tt{I =  \int_{0}^{\pi} \tan ^{ - 1} \left( \left(2021 \right)^{cos(x)} \right) \: dx \:  \:  \:  \:  \:  \:  \:  \:  \: ...(1)}

\displaystyle \tt{ \implies \: I =  \int_{0}^{\pi} \tan ^{ - 1} \left( \left(2021 \right)^{cos( \pi - x)} \right) \: dx}

\displaystyle \tt{ \implies \: I =  \int_{0}^{\pi} \tan ^{ - 1} \left( \left(2021 \right)^{ - cos( x)} \right) \: dx}

\displaystyle \tt{ \implies \: I =  \int_{0}^{\pi} \tan ^{ - 1} \left( \dfrac{1}{ \left(2021 \right)^{ - cos( x)}} \right) \: dx}

\displaystyle \tt{ \implies \: I =  \int_{0}^{\pi} \cot ^{ - 1} \left(  \left(2021 \right)^{ - cos( x)} \right) \: dx \:  \:  \:  \:  \:  \:  \:  \:  \: ...(2)}

Adding (1) and (2),

\displaystyle \tt{ \implies \:2 I =\int_{0}^{\pi} \tan^{ - 1} \left(  \left(2021 \right)^{ - cos( x)} \right) \: dx +   \int_{0}^{\pi} \cot ^{ - 1} \left(  \left(2021 \right)^{ - cos( x)} \right) \: dx }

\displaystyle \tt{ \implies \:2 I =\int_{0}^{\pi}  \left \{\tan^{ - 1} \left(  \left(2021 \right)^{ - cos( x)} \right)  +  \cot ^{ - 1} \left(  \left(2021 \right)^{ - cos( x)} \right)  \right \}\: dx }

\displaystyle \tt{ \implies \:2 I =\int_{0}^{\pi}  \dfrac{ \pi}{2}\: dx }

\displaystyle \tt{ \implies \:2 I = \dfrac{ \pi}{2}\:\int_{0}^{\pi}  \: dx }

\displaystyle \tt{ \implies \:2 I = \dfrac{ \pi}{2}  \cdot[x] _{0}^{\pi}   }

\displaystyle \tt{ \implies \:2 I = \dfrac{ \pi}{2} (\pi - 0)   }

\displaystyle \tt{ \implies \:2 I = \dfrac{ \pi^{2} }{2}  }

\displaystyle \tt{ \implies \: I = \dfrac{ \pi^{2} }{4}  }

Similar questions