Math, asked by Anonymous, 1 year ago

\displaystyle{If \ ;}\\\\\displaystyle{\tan\frac{\theta}{2}=\sqrt{\dfrac{1-e}{1+e}}\tan\frac{\phi}{2}}\\\\\\\displaystyle{Prove \ that \ :}\\\\\\\displaystyle{\cos \phi=\dfrac{\cos\theta-e}{1-e \ \cos\theta}}

Answers

Answered by StuartLittle
60

Stuart Little

Here is your answer:-

Refer the attachment

Hope it helps you

Attachments:

Anonymous: Thanks : )
Answered by Anonymous
30

SOLUTION:-

To prove:

 \cos \theta =   \frac{cos \theta - e}{1 - e \: cos \theta}

Proof:

L.H.S

cos \theta =  \frac{1 - tan2 \frac{ \theta \: }{2} }{1 + tan \: 2 \frac{ \theta}{2} }  \:  \:  \:  \: [As \: cos \: 2 \theta =  \frac{1 - tan {}^{2}  \theta}{1 +  tan \:  {}^{2} \theta } ]..........(1) \\   \\ ∵ tan( \frac{ \theta}{2} ) =  \sqrt{ \frac{(1 - e)}{(1 + e)} } tan[ \frac{ \theta}{2} ] \:  \:  \:  \:  \: (given)

Squaring both sides and rearranging,

</u></strong><strong><u>∴</u></strong><strong><u>tan {}^{2} ( \frac{ \theta}{2} ) =  \frac{( 1 + e)}{(1 - e)} tan  \: {}^{2} \frac{ \theta}{2}  ............(2) \\  putting \:  {tan}^{2} ( \frac{ \theta}{2} ) \: from \: eq.2 \: in \: eq.1 \\ </u></strong><strong><u>∴</u></strong><strong><u> \frac{1 - tan \:  {}^{2} ( \frac{ \theta}{2} )}{1 + tan \:  {}^{2}( \frac{ \theta}{2}  )}  =  \frac{1 - ( \frac{(1 + e)}{( 1 - e)} tan \:  {}^{2} ( \frac{ \theta}{2} ))}{1 + ( \frac{(1 + e)}{(1 - e)} tan \:  {}^{2} ( \frac{ \theta}{2})) }  \\  \\  =  &gt;  \frac{1 - e - tan \:  {}^{2}( \frac{ \theta}{2}  ) - e \: tan \:  {}^{2} ( \frac{ \theta}{2} )}{1 - e + tan  \:  {}^{2} ( \frac{ \theta}{2}) + e \: tan \:  {}^{2}( \frac{ \theta}{2}  ) }  \\  \\  =  &gt;  \frac{(1 - tan \:  {}^{2} ( \frac{ \theta}{2})) - e(1 + tan \:  {}^{2}( \frac{ \theta}{2}  )) }{(1 + tan \: {}^{2}( \frac{ \theta}{2})) - e(1 - tan \:  {}^{2}  ( \frac{ \theta}{2}  ))}

Dividing numerator & denominator by (1+tan ²theta2).

 =  &gt;  \frac{( \frac{(1 - tan \: {}^{2}  \frac{ \theta}{2}) }{(1 + tan \:  {}^{2} \frac{ \theta}{2})  }) - e( \frac{(1 + tan \:  {}^{2} \frac{ \theta}{2}  )}{(1 + tan \:  {}^{2}  \frac{ \theta}{2}) } ) }{( \frac{(1 + tan \:  {}^{2} \frac{ \theta}{2} ) }{(1 + tan \:  {}^{2} \frac{ \theta}{2} )  } - e( \frac{(1 - tan \:  {}^{2} \frac{ \theta}{2}  )}{(1 + tan \:  {}^{2}  \frac{ \theta}{2}) } ) }  \\  \\  =  &gt; ( \frac{cos \theta - e}{1 - e \: cos \theta} ) \:  \:  \:  \:  \:  \: [cos \: 2 \theta =  \frac{1 - tan \:  {}^{2}  \theta}{1 + tan {}^{2}  \theta} ]

R.H.S

Hence, proved

Hope it helps ☺️

Similar questions