Math, asked by TrustedAnswerer19, 2 months ago

\displaystyle \int_0^{ \frac{\pi}{2} } cos^5 x\ dx = \:?\:

Solve the math by " Wallie's theorem " with explanation.

Answer :  \frac{8}{15}


Don't spamming. ​

Answers

Answered by hukam0685
6

Step-by-step explanation:

Given:

\displaystyle \int_0^{ \frac{\pi}{2} } cos^5 x\ dx = \:?\:

To find: Definite integral using "Wallie's theorem"

Solution:

Tip: Wallie's theorem for odd power

 \boxed{\int_0^{ \frac{\pi}{2} } cos^nx\ dx  = \int_0^{ \frac{\pi}{2} } sin^nx\ dx =   \frac{2.4.6....(n - 1)}{1.3.5....n} }

Here,

n is odd and it's value is 5.

Put the value of n in the formula of Wallie's theorem. Numerator has only two terms ,because (5-1)=4

and denominator have to write upto 3 terms 1.3.5 only.

\int_0^{ \frac{\pi}{2} } cos^5x\ dx =   \frac{2.(5 - 1)}{1.3.5}  \\  \\ \int_0^{ \frac{\pi}{2} } cos^5x\ dx =   \frac{2.4}{1.3.5} \\  \\ \int_0^{ \frac{\pi}{2} } cos^5x\ dx =   \frac{8}{15} \\  \\

Final Answer:

 \boxed{ \bold{\int_0^{ \frac{\pi}{2} } cos^5x\ dx =   \frac{8}{15} }}\\  \\

Hope it helps you.

To learn more on brainly:

integration of e^x(1-sinx)/(1-cosx)

https://brainly.in/question/9459283

Answered by StormEyes
9

Solution!!

\displaystyle \int_0^{ \frac{\pi}{2} } cos^5 x\ dx = \:?\:

We have to solve this using Wallis' theorem. As we can observe, the power is 5 which is an odd number. So, in this case,

\displaystyle \int_{0}^{\frac{\pi}{2}}\sin ^{n}x\ dx =\displaystyle \int_{0}^{\frac{\pi}{2}}\cos ^{n}x\ dx =\dfrac{(n-1)(n-3)}{(n-0)(n-2)(n-4)}

Here, n is the odd number which in this case is 5. Let's solve!

=\dfrac{(5-1)(5-3)}{(5-0)(5-2)(5-4)}

=\dfrac{(4\times 2}{5\times 3\times 1}

=\dfrac{8}{15}

Another method!

\to \displaystyle \int_0^{ \frac{\pi}{2} } cos^5 x\ dx

To evaluate the definite integral, first evaluate the indefinite integral.

\to \int \cos ^{5}x\ dx

Write the expression as a product with the factor \cos ^{4}x.

\to \int \cos ^{4}x\cos x\ dx

Use the substitution t=\sin x to transform the integral.

\to \int 1-2t^{2}+t^{4}\ dt

Use the property of integral \int f(x)\pm g(x)dx =\int f(x)dx\pm \int g(x)dx.

\to \int 1dt-\int 2t^{2}dt+\int t^{4}dt

Use \int 1dx=x to evaluate the integral.

\to t-\int 2t^{2}dt+\int t^{4}dt

Evaluate the indefinite integral.

\to t-\dfrac{2t^{3}}{3}+\int t^{4}dt

Use \int x^{n}dx=\dfrac{x^{n+1}}{n+1},n\neq -1 to evaluate the integral.

\to t-\dfrac{2t^{3}}{3}+\dfrac{t^{5}}{5}

Substitute back t=\sin x.

\to \sin x-\dfrac{2\sin ^{3}x}{3}+\dfrac{\sin ^{5}x}{5}

To evaluate the definite integral, return the limits of integration.

\to \left. \left(\sin x-\dfrac{2\sin ^{3}x}{3}+\dfrac{\sin ^{5}x}{5}\right)\right|_{0}^{\frac{\pi }{2}}

Calculate the expression using \left. F(x)\right|_{a}^{b}=F(b)-F(a).

\to \sin \dfrac{\pi}{2}-\dfrac{2\sin ^{3}\left(\dfrac{\pi}{2}\right)}{3}+\dfrac{\sin ^{5}\left(\dfrac{\pi}{2}\right)}{5}-\left(\sin 0-\dfrac{2\sin ^{3}0}{3}+\dfrac{\sin ^{5}0}{5}\right)

Calculate the expression.

\to 1-\dfrac{2\times 1^{3}}{3}+\dfrac{1^{5}}{5}-\left(0-\dfrac{2\times 0^{3}}{3}+\dfrac{0^{5}}{5}\right)

Simplify the expression.

\to 1-\dfrac{2\times 1}{3}+\dfrac{1}{5}-\left(0-\dfrac{2\times 0}{3}+\dfrac{0}{5}\right)

\to 1-\dfrac{2}{3}+\dfrac{1}{5}-\left(-\dfrac{0}{3}+0\right)

\to 1-\dfrac{2}{3}+\dfrac{1}{5}-(-0)

\to 1-\dfrac{2}{3}+\dfrac{1}{5}+0

\to \dfrac{8}{15}

Similar questions