Math, asked by Anonymous, 1 day ago

{\displaystyle\int}\dfrac{2020\left(x^{\mathrm{e}^{\pi}}-\mathrm{e}^{-{\gamma}}-1\right)}{\ln\left(x\right)}\,\mathrm{d}x

Answers

Answered by sajan6491
16

{\displaystyle \tt \red{{\int}\dfrac{2020\left(x^{\mathrm{e}^{\pi}}-\mathrm{e}^{-{\gamma}}-1\right)}{\ln\left(x\right)}\,\mathrm{d}x}}

{  \red{= }\displaystyle\tt \color{red} { \int}\left(\dfrac{2020x^{\mathrm{e}^{\pi}}}{\ln\left(x\right)}-\dfrac{2020\mathrm{e}^{-{\gamma}}}{\ln\left(x\right)}-\dfrac{2020}{\ln\left(x\right)}\right)\mathrm{d}x}

\tt \red{{ = \displaystyle\int}\dfrac{x^{\mathrm{e}^{\pi}}}{\ln\left(x\right)}\,\mathrm{d}x+{}{{}{2020\mathrm{e}^{-{\gamma}}\left(-\mathrm{e}^{\gamma}-1\right)}}{\cdot}{\displaystyle\int}\dfrac{1}{\ln\left(x\right)}\,\mathrm{d}x}

 \tt \color{red}{\displaystyle\int}\dfrac{x^{\mathrm{e}^{\pi}}}{\ln\left(x\right)}\,\mathrm{d}x

 \tt \red{={\displaystyle\int}\dfrac{\mathrm{e}^{\left(\mathrm{e}^{\pi}+1\right)u}}{u}\,\mathrm{d}u}

 \tt \red{={\displaystyle\int}\dfrac{\mathrm{e}^v}{v}\,\mathrm{d}v}

  \tt \red{= Ei(v)}

  \tt \red{= Ei(( {e}^{\pi}  + 1)u)}

  \tt \red{= Ei(( {e}^{\pi}  + 1)  \ln(x) )}

 \tt \red{{\displaystyle\int}\dfrac{1}{\ln\left(x\right)}\,\mathrm{d}x}

 \rm\red{ = li(x)}

 \tt \red{{{2020}}{\displaystyle\int}\dfrac{x^{\mathrm{e}^{\pi}}}{\ln\left(x\right)}\,\mathrm{d}x+{}{{}{2020\mathrm{e}^{-{\gamma}}\left(-\mathrm{e}^{\gamma}-1\right)}}{\cdot}{\displaystyle\int}\dfrac{1}{\ln\left(x\right)}\,\mathrm{d}x}

 \tt \red{=2020\operatorname{Ei}\left(\left(\mathrm{e}^{\pi}+1\right)\ln\left(x\right)\right)+2020\mathrm{e}^{-{\gamma}}\left(-\mathrm{e}^{\gamma}-1\right)\operatorname{li}\left(x\right)}

{ \tt { \color{red}{\displaystyle\int}\dfrac{2020\left(x^{\mathrm{e}^{\pi}}-\mathrm{e}^{-{\gamma}}-1\right)}{\ln\left(x\right)}\,\mathrm{d}x}}

 \tt \red{=2020\operatorname{Ei}\left(\left(\mathrm{e}^{\pi}+1\right)\ln\left(x\right)\right)+2020\mathrm{e}^{-{\gamma}}\left(-\mathrm{e}^{\gamma}-1\right)\operatorname{li}\left(x\right)+C}

 \tt \red{=2020\operatorname{Ei}\left(\left(\mathrm{e}^{\pi}+1\right)\ln\left(x\right)\right)-2020\mathrm{e}^{-{\gamma}}\operatorname{li}\left(x\right)-2020\operatorname{li}\left(x\right)+C}

Similar questions