Math, asked by sajan6491, 5 days ago



\displaystyle \int{{{{\sin }^3}\left( {\frac{2}{3}x} \right){{\cos }^4}\left( {\frac{2}{3}x} \right)\,dx}}

Don't spam, please provide complete steps​

Answers

Answered by mathdude500
34

\large\underline{\sf{Solution-}}

Given integral is

\rm \: \displaystyle \int{{{{\sin }^3}\left( {\frac{2}{3}x} \right){{\cos }^4}\left( {\frac{2}{3}x} \right)\,dx}}

can be rewritten as

\rm \: =  \:\displaystyle \int{{{{\sin }^2}\left( {\frac{2}{3}x} \right){{\cos }^4}\left( {\frac{2}{3}x} \right)sin\left( {\frac{2}{3}x} \right)\,dx}} \\

can be further rewritten as

\rm \: =  \:\displaystyle \int{{{\bigg(1 - {\cos}^2}\left( {\frac{2}{3}x} \right)\bigg){{\cos }^4}\left( {\frac{2}{3}x} \right)sin\left( {\frac{2}{3}x} \right)\,dx}} \\

To evaluate this integral, we use method of Substitution.

So, Substitute

\rm \: cos\left( {\dfrac{2}{3}x} \right) \:  =  \: y \\

\rm \:  - \:   \dfrac{2}{3}  \: sin\left( {\dfrac{2}{3}x} \:  \right) \:  =  \:  \frac{dy}{dx}  \\

\rm \: sin\left( {\dfrac{2}{3}x} \right)dx \:  =  \:  -  \:  \dfrac{3}{2} \: dy \:  \\

So, on substituting the values, we get

\rm \: =  \: -  \:  \dfrac{3}{2} \displaystyle \int\rm \: (1 -  {y}^{2}) {y}^{4} \: dy \\

\rm \: =  \: -  \:  \dfrac{3}{2} \displaystyle \int\rm \: ( {y}^{4}  -  {y}^{6})  \: dy \\

\rm \: =  \:  \dfrac{3}{2} \displaystyle \int\rm \: ( {y}^{6}  -  {y}^{4})  \: dy \\

We know,

\boxed{\sf{  \:\rm \: \displaystyle \int \:  {x}^{n} \: dx \:  =  \:  \frac{ {x}^{n + 1} }{n + 1}  + c \:  \: }} \\

So, using this, we get

\rm \: =  \:\dfrac{3}{2}\bigg(\dfrac{ {y}^{7} }{7}  - \dfrac{ {y}^{5} }{5} \bigg)  + c

\rm \: =  \:\dfrac{3}{14} {cos}^{7}\left( {\dfrac{2}{3}x} \right) - \dfrac{3}{10} {cos}^{5}\left( {\dfrac{2}{3}x} \right) + c \\

Hence,

\rm\implies \:\displaystyle \int{{{{\sin }^3}\left( {\frac{2}{3}x} \right){{\cos }^4}\left( {\frac{2}{3}x} \right)\,dx}} \\  \\ \rm \: =  \:\dfrac{3}{14} {cos}^{7}\left( {\dfrac{2}{3}x} \right) - \dfrac{3}{10} {cos}^{5}\left( {\dfrac{2}{3}x} \right) + c \\

\rule{190pt}{2pt}

Additional Information :-

\begin{gathered}\begin{gathered}\boxed{\begin{array}{c|c} \bf f(x) & \bf \displaystyle \int \rm \:f(x) \: dx\\ \\ \frac{\qquad \qquad}{} & \frac{\qquad \qquad}{} \\ \sf k & \sf kx + c \\ \\ \sf sinx & \sf - \: cosx+ c \\ \\ \sf cosx & \sf \: sinx + c\\ \\ \sf {sec}^{2} x & \sf tanx + c\\ \\ \sf {cosec}^{2}x & \sf - cotx+ c \\ \\ \sf secx \: tanx & \sf secx + c\\ \\ \sf cosecx \: cotx& \sf - \: cosecx + c\\ \\ \sf tanx & \sf logsecx + c\\ \\ \sf \dfrac{1}{x} & \sf logx+ c\\ \\ \sf {e}^{x} & \sf {e}^{x} + c\end{array}} \\ \end{gathered}\end{gathered}

Answered by Anonymous
27

\sf I = \int sin^{3}(\dfrac{2x}{3}) cos^{4}  (\dfrac{2x}{3})

Now, we can write sin³(2x/3) as sin²(2x/3)sin(2x/3),

\sf I = \int sin^{2}(\dfrac{2x}{3}) sin(\dfrac{2x}{3} ) cos^{4}  (\dfrac{2x}{3})

We now can use sin²x + cos²x = 1 and replace sin²(2x/3) by (1 - cos²(2x/3))

\sf I = \int (1 - cos^{2}(\dfrac{2x}{3} ) sin (\dfrac{2x}{3} ) cos^{4} (\dfrac{2x}{3} )

Now just to make the question look neat and allow us to think better, we will take cos(2x/3) as t and then differentiate,

\sf cos(\dfrac{2x}{3}) = t

\sf - sin (\dfrac{2x}{3} ) \times \dfrac{2}{3}dx = dt

We can clearly see that we have sin(2x/3)dx in our question,so we will express it in simpler manner so as to substitute its value in the question to make it easy to think ahead,

\sf sin (\dfrac{2x}{3} )dx = -\dfrac{3}{2} dt

Now all we are left with is substituting and doing some easy integration to reach to our destination,

\sf I = \int - \dfrac{3}{2} (1 - t^{2} ) t^{4} dt

[∵ cos (2x/3) = t => cos²(2x/3) = t²]

Now multiply the t with the entire bracket term,

\sf I = -\dfrac{3}{2} \int  (t^{4} - t^{6} ) dt

Using the most basic yet most powerful integration formula : xⁿ = xⁿ⁺¹/n+1,we get this following result,

\sf I = -\dfrac{3}{2} [\dfrac{t^{5} }{5} - \dfrac{t^{7} }{7} ]

Now just put the values,

\sf I = -\dfrac{3}{2} [\dfrac{cos^{5} (\dfrac{2x}{3}) }{5} - \dfrac{cos^{7} (\dfrac{2x}{3}) }{7} ] + c

Finally multiply the -3/2 with the whole bracket,

\sf I = -\dfrac{3}{10} cos^{5}(\dfrac{2x}{3}) +  \dfrac{3}{14} cos^{7}( \dfrac{2x}{3}) + c

Similar questions