Math, asked by Anonymous, 1 day ago

\displaystyle \int^{ \sqrt[3]{ \log4} }_{ \sqrt[3]{ \log3} } \frac{ {x}^{2} \sin {x}^{3} }{ \sin {x}^{3} + \sin( \log12 - {x}^{3} )} \: dx

Answers

Answered by mathdude500
5

\large\underline{\sf{Solution-}}

Given integral is

\rm :\longmapsto\:\displaystyle \int^{ \sqrt[3]{ \log4} }_{ \sqrt[3]{ \log3} } \frac{ {x}^{2} \sin {x}^{3} }{ \sin {x}^{3} + \sin( \log12 - {x}^{3} )} \: dx

Let assume that

\rm :\longmapsto\:I = \displaystyle \int^{ \sqrt[3]{ \log4} }_{ \sqrt[3]{ \log3} } \frac{ {x}^{2} \sin {x}^{3} }{ \sin {x}^{3} + \sin( \log12 - {x}^{3} )} \: dx

To, solve this integral, we use Method of Substitution.

So, Substitute

\red{\rm :\longmapsto\: {x}^{3} = y}

\red{\rm :\longmapsto\: 3{x}^{2}dx = dy}

\red{\rm :\longmapsto\: {x}^{2}dx = \dfrac{dy}{3} }

Now, we know, when we substitute, we have to change the limits.

So,

\begin{gathered}\boxed{\begin{array}{c|c} \bf x & \bf y  =  {x}^{3} \\ \frac{\qquad \qquad}{} & \frac{\qquad \qquad}{} \\ \sf  \sqrt[3]{log3}  & \sf log3 \\ \\ \sf  \sqrt[3]{log4}  & \sf log4 \end{array}} \\ \end{gathered}

So, above integral can be rewritten as

\rm :\longmapsto\:I =\dfrac{1}{3}  \displaystyle \int^{log4 }_{ log3 } \frac{\sin y }{ \sin y + \sin( \log12 - y )} \: dy -  - (1)

We know

\boxed{\tt{ \displaystyle\int_a^b \: f(x)dx = \displaystyle\int_a^b \: f(a + b - x) \: dx \: }}

So, using this identity, Change

\red{\rm :\longmapsto\:x \to \: log4 + log3 - x = log12 - x}

So, we get

\rm :\longmapsto\:I =\dfrac{1}{3}  \displaystyle \int^{log4 }_{ log3 } \frac{\sin (log12 - y) }{ \sin (log12 - y) + \sin(y)} \: dy -  - (2)

On adding equation (1) and (2), we get

\rm :\longmapsto\:2I =\dfrac{1}{3}  \displaystyle \int^{log4 }_{ log3 } \frac{sin(y) + \sin (log12 - y) }{ \sin (log12 - y) + \sin(y)} \: dy

\rm :\longmapsto\:2I =\dfrac{1}{3}  \displaystyle \int^{log4 }_{ log3 } 1 \: dy

\rm :\longmapsto\:2I =\dfrac{1}{3}  \bigg[y\bigg]^{log4 }_{ log3 }

\rm :\longmapsto\:I =\dfrac{1}{6}  \bigg[{log4 } - { log3 }\bigg]

\rm :\longmapsto\:I =\dfrac{1}{6}  \bigg[{log \dfrac{4}{3} }\bigg]

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

More to know :-

\boxed{\tt{ \displaystyle\int _a^b \: f(x) \: dx \:  =  \: \displaystyle\int _a^bf(y) \: dy \: }}

\boxed{\tt{ \displaystyle\int _a^b \: f(x) \: dx \:  = \:  -   \: \displaystyle\int _b^a \: f(x) \: dx \: }}

\boxed{\tt{ \displaystyle\int _0^a \: f(x) \: dx \:  =  \: \displaystyle\int _0^a \: f(a - x) \: dx \: }}

\boxed{\tt{ \displaystyle\int _a^b \: f(x) \: dx \:  =  \: \displaystyle\int _a^b \: f(a + b - x) \: dx \: }}

\boxed{\tt{ \displaystyle\int _{ - a}^a\: f(x) \: dx \:  = 0 \:  \: if \: f( - x) =  - f(x)}}

\boxed{\tt{ \displaystyle\int _{ - a}^a\: f(x) \: dx \:  = 2\displaystyle\int _0^af(x)dx \:  \: if \: f( - x) = f(x)}}


pulakmath007: Excellent
Similar questions