Math, asked by Anonymous, 2 days ago


\displaystyle \lim_{x \to 2} \frac{x^2-4}{x-2}

Answers

Answered by ꜱᴄʜᴏʟᴀʀᴛʀᴇᴇ
32

Answer:

\displaystyle \lim_{x \to 2} \frac{x^2-4}{x-2} = \displaystyle \lim_{x \to 2} \frac{ {x}^{2}  - {2}^{2} }{x-2} \\ \\ =   \displaystyle \lim_{x \to 2} \frac{(x - 2)(x - 2)}{x-2} \\  \\ = \displaystyle \lim_{x \to 2} \frac{(x - 2)x - 2}{x-2} \\ \\  = \displaystyle \lim_{x \to 2} (x - 2)\\ \\ =  (2  + 2) \\  \\ =  4(Ans)

Answered by Anonymous
7

 =  \displaystyle \lim_{x \to 2} \frac{x^2-4}{x-2}

 =  \displaystyle \lim_{x \to 2} \frac{x^2- {2}^{2} }{x-2}

 =  \displaystyle \lim_{x \to 2} \frac{(x + 2)(x - 2) }{x-2}

 =  \displaystyle \lim_{x \to 2} \frac{(x + 2) \cancel{(x - 2)} }{ \cancel{x-2}}

 =  \displaystyle \lim_{x \to 2} (x + 2)

 =   (2 + 2)

 =  4

Similar questions