Math, asked by llXxDramaticKingxXll, 5 hours ago

\displaystyle \lim_{x \to 4} \rm{ \dfrac{ {2x}^{3} - 128 }{ \sqrt{x} - 2}}

 \dag\sf{ \: No \: spam}

Answers

Answered by IamIronMan0
167

Answer:

 \huge \purple{384}

Step-by-step explanation:

\displaystyle \lim_{x \to 4} \rm{ \dfrac{ {2x}^{3} - 128 }{ \sqrt{x} - 2}}  \times  \frac{ \sqrt{x}  + 2}{ \sqrt{x} + 2 } </p><p> \\  \\  = \displaystyle \lim_{x \to 4} \rm{ \dfrac{( {2x}^{3} - 128)( \sqrt{x}   + 2)}{ x - 4}}  \\  \\ use \:  \: l \: hopital \: rule \\  \\  = </p><p>\displaystyle \lim_{x \to 4} \rm{ \dfrac{2(3 {x}^{2}) ( \sqrt{x}   + 2) +  \frac{1}{2 \sqrt{x}} (2 {x}^{3}  - 128)} { 1}} \\  \\  = 6 \times  {4}^{2}  \times ( \sqrt{4}  + 2) +  \frac{1}{2 \sqrt{4} }  \times (2. {4}^{3}  - 128) \\  \\  = 6 \times 64 +  \frac{1}{4} (128 - 128) \\  \\  = 384

Answered by tname3345
145

Answer:

Step-by-step explanation:

The answer is 384

Please check the attached file

Attachments:
Similar questions