Math, asked by Anonymous, 9 days ago

 \displaystyle \lim_{x \to0} \frac{ \int \limits_{0}^{{x}^{2}} \sqrt{4 +  {t}^{3} }  dt }{ {x}^{2} }

Answers

Answered by mathdude500
27

\large\underline{\sf{Solution-}}

Given expression is

\rm \: \displaystyle \lim_{x \to0} \frac{ \displaystyle\int \limits_{0}^{{x}^{2}} \sqrt{4 + {t}^{3} } dt }{ {x}^{2} } \\

On applying L Hospital Rule, we get

\rm \: =  \:\displaystyle \lim_{x \to0} \frac{\dfrac{d}{dx} \displaystyle\int \limits_{0}^{{x}^{2}} \sqrt{4 + {t}^{3} } dt }{\dfrac{d}{dx} {x}^{2} } \\

Now, we know,

\rm \: \dfrac{d}{dx} {x}^{2}  = 2x \:  \\

We know, Differentiation under the integral sign, using Leibnitz Rule

\rm \: \dfrac{d}{dx}\displaystyle\int \limits_{a}^{b}f(x,y)dy = \displaystyle\int \limits_{a}^{b}\dfrac{ \partial \: }{\partial\: x}f(x,y)dy + \dfrac{db}{dx}f(x,b) - \dfrac{da}{dx}f(x,a) \\

So, using this rule,

\rm \: \dfrac{d}{dx}\displaystyle\int \limits_{0}^{{x}^{2}} \sqrt{4 + {t}^{3} } dt \\

\rm \: =  \:\displaystyle\int \limits_{0}^{{x}^{2}} \dfrac{\partial}{\partial \: x} \: \sqrt{4 + {t}^{3} } dt + \dfrac{d}{dx}( {x}^{2}) \times  \sqrt{4 +  {x}^{3} } - \dfrac{d}{dx}(0) \sqrt{4 +  {0}^{3} }  \\

\rm \: =  \:0 + 2x \times  \sqrt{4 +  {x}^{3} }  - 0 \\

\rm \: =  \: 2x\sqrt{4 +  {x}^{3} } \\

So, on substituting all these values in above expression, we get

\rm \: =  \:\displaystyle\lim_{x \to \: 0} \:  \frac{2x \sqrt{4 +  {x}^{3} } }{2x}  \\

\rm \: =  \:\displaystyle\lim_{x \to \: 0} \:   \sqrt{4 +  {x}^{3} }   \\

\rm \: =  \: \sqrt{4}  \\

\rm \: =  \:2 \\

Hence,

\rm\implies \: \boxed{\sf{  \:\: \rm \: \displaystyle \lim_{x \to0} \frac{ \displaystyle\int \limits_{0}^{{x}^{2}} \sqrt{4 + {t}^{3} } dt }{ {x}^{2} } = 2 \:  \:  \: }} \\  \\

\rule{190pt}{2pt}

Additional Information :-

\begin{gathered}\boxed{\begin{array}{c|c} \bf f(x) & \bf \dfrac{d}{dx}f(x) \\ \\  \frac{\qquad \qquad}{} & \frac{\qquad \qquad}{} \\ \sf k & \sf 0 \\ \\ \sf sinx & \sf cosx \\ \\ \sf cosx & \sf  -  \: sinx \\ \\ \sf tanx & \sf  {sec}^{2}x \\ \\ \sf cotx & \sf  -  {cosec}^{2}x \\ \\ \sf secx & \sf secx \: tanx\\ \\ \sf cosecx & \sf  -  \: cosecx \: cotx\\ \\ \sf  \sqrt{x}  & \sf  \dfrac{1}{2 \sqrt{x} } \\ \\ \sf logx & \sf \dfrac{1}{x}\\ \\ \sf  {e}^{x}  & \sf  {e}^{x}  \end{array}} \\ \end{gathered}

Answered by Anonymous
29

\huge\colorbox{white}{ \colorbox{white}{\colorbox{white}{Question}}}

\Huge\sf\implies  \displaystyle \lim_{x \to0} \frac{ \int \limits_{0}^{{x}^{2}} \sqrt{4 + {t}^{3} } dt }{ {x}^{2} }

_______________________________

\huge\sf\star Solution :-

\Huge\sf\implies  \displaystyle\color{gray} \lim_{x \to0} \frac{ \int \limits_{0}^{{x}^{2}} \sqrt{4 + {t}^{3} } dt }{ {x}^{2} }

\Huge\sf\implies If we put x = 0 , then \frac{0}{0} form

So, by L.Hospital rule,

\lim_{x\rightarrow 0}  [tex]\sqrt{4\:+\:6²)³}

\Huge\sf\implies \frac{2}{2n} (2²) - 0....

\Huge\sf\implies \bold\color{red} {Using\: Newton\:Leibnitz\:Formula\:in\:numerator}

\huge\lim_{x\rightarrow0}  [tex] \sqrt\frac{4\:+\:x⁶ \:. 2x }{2x}}

\Huge\sf\implies \lim_{x\rightarrow 0}  \sqrt{4\:+\:x²}

\Huge\sf\implies \sqrt{4\: + \:0}

\sf\huge\implies 2

Hence , the value of the limit is 2

________________________________

Similar questions