Math, asked by Anonymous, 12 hours ago

 \displaystyle \mathfrak{ \sum \limits^{ \infty }_{n = 1} \frac{ \zeta(2n + 1)}{ {4}^{n}(2n + 1) } }

Answers

Answered by sajan6491
3

\displaystyle \tt \red{{ \sum \limits^{ \infty }_{n = 1} \frac{ \zeta(2n + 1)}{ {4}^{n}(2n + 1) } }}

Can be written as:-

\displaystyle \tt \red{{ \sum_{n=1}^{\infty} 4^{- n} \zeta}}

Pull the constant out of the series:

\displaystyle \tt \red{{ \color{red}{\sum_{n=1}^{\infty} 4^{- n} \zeta}=\color{red}{\zeta \sum_{n=1}^{\infty} \left(\frac{1}{4}\right)^{n}}}}

\displaystyle \tt \red{{ \sum_{n=1}^{\infty} \left(\frac{1}{4}\right)^{n} } } is an infinite geometric series with the first term b=1/4 and the common ratio q=1/4.

By the ratio test, it is convergent.

  \displaystyle\sf \red{Its \:  sum \:  is \:  S=\frac{b}{1-q}=\frac{1}{3}}

Therefore,

 \displaystyle{\tt \red{ \zeta \color{red}{\left(\sum_{n=1}^{\infty} \left(\frac{1}{4}\right)^{n}\right)}=\zeta \color{red}{\left(\frac{1}{3}\right)}}}

Hence,

 \displaystyle{\tt \red {\sum_{n=1}^{\infty} 4^{- n} \zeta=\frac{\zeta}{3}}}

Answer

\displaystyle \tt \red{{ \sum \limits^{ \infty }_{n = 1} \frac{ \zeta(2n + 1)}{ {4}^{n}(2n + 1)} =\frac{\zeta}{3} }}

Similar questions