Math, asked by Anonymous, 16 hours ago


 \displaystyle \mathfrak{ \sum \limits^{ \infty }_{n = 1} \frac{ \zeta(2n + 1)}{ {4}^{n}(2n + 1) } }

Answers

Answered by sajan6491
8

 \color{blue}\boxed{\boxed{ \boxed{\boxed{\begin{matrix}\displaystyle \tt \red{{ \sum \limits^{ \infty }_{n = 1} \frac{ \zeta(2n + 1)}{ {4}^{n}(2n + 1) } }}  \\   \red{\sf{Can \:  be \:  written \:  as:-}} \\  \displaystyle \tt \red{{ \sum_{n=1}^{\infty} 4^{- n} \zeta}}  \\   \red{\small \sf{Pull  \: the \:  constant  \: out \:  of  \: the  \: series:}} \\ \displaystyle \tt \red{{ \color{red}{\sum_{n=1}^{\infty} 4^{- n} \zeta}=\color{red}{\zeta \sum_{n=1}^{\infty} \left(\frac{1}{4}\right)^{n}}}}  \\ \displaystyle \tt \red{{ \sum_{n=1}^{\infty} \left(\frac{1}{4}\right)^{n} } } \sf \red{   is  \: an  \: infinite \:  geometric  \: series}  \\  \sf \red{ with \:  the \:  first \:  term \:  b= \frac{1}{4}  \: and  \: the}  \\   \sf \red{common \:  ratio \:  q= \frac{1}{4} } \\  \sf \red{By  \: the \:  ratio \:  test,  \: it \:  is \:  convergent} \\ \displaystyle\sf \red{Its \: sum \: is \: S=\frac{b}{1-q}=\frac{1}{3}} \\  \sf \red{Therefore,} \\ \displaystyle{\tt \red{ \zeta \color{red}{\left(\sum_{n=1}^{\infty} \left(\frac{1}{4}\right)^{n}\right)}=\zeta \color{red}{\left(\frac{1}{3}\right)}}} \\  \sf \red{Hence, }\\ \displaystyle{\tt \red {\sum_{n=1}^{\infty} 4^{- n} \zeta=\frac{\zeta}{3}}} \end{matrix}}}}}

Similar questions