Math, asked by Anonymous, 22 hours ago

 \displaystyle \red{\sf \int_ {2}^{4}(6 {x}^{2} - 3x + 11) \: dx }  \\
Solve with full explanation.​

Answers

Answered by Anonymous
6

Answer:

  •  \boxed{\sf \int_ {2}^{4}(6 {x}^{2} - 3x + 11) \: dx  = 116} \\

Step-by-step explanation:

 \implies\sf \int_ {2}^{4}(6 {x}^{2} - 3x + 11) \: dx  \\

 \implies\sf   \bigg[ \frac{6 {x}^{3} }{3}  -  \frac{3 {x}^{2} }{2} + 11x \bigg] _{2}^{4}  \\

 \implies\sf   \bigg[ \frac{ \cancel{6} {x}^{3} }{ \cancel{3}}  -  \frac{3 {x}^{2} }{2} + 11x \bigg] _{2}^{4}  \\

 \implies\sf   \bigg[ 2 {x}^{3}  -  \frac{3 }{2} {x}^{2}  + 11x \bigg] _{2}^{4}  \\

 \implies\sf   \bigg[ 2 {(4)}^{3}  -  \frac{3 }{2} {(4)}^{2}  + 11(4) \bigg]  -  \bigg[ 2 {(2)}^{3}  -  \frac{3 }{2} {(2)}^{2}  + 11(2) \bigg] \\

 \implies\sf   \bigg[ 2(64)  -  \frac{3 }{2}(16)  + 44 \bigg]  -  \bigg[ 2(8)  -  \frac{3 }{2}(4)  + 22 \bigg] \\

 \implies\sf   \bigg[ 128  -  \frac{3 }{ \cancel{2}}( \cancel{16})  + 44 \bigg]  -  \bigg[ 16 -  \frac{3 }{ \cancel{2}}( \cancel{4})  + 22 \bigg] \\

 \implies\sf   [ 172  - {3 }( 8)   ]  -  [ 38 -  3(2) ] \\

 \implies\sf   [ 172  - 24]  -  [ 38 -  6 ] \\

 \implies\sf   [ 148]  -  [ 32 ] \\

 \implies\sf   116\\

Answered by missattitudequeen77
2

Answer:

plz slove my question plz

find the lcm and hcf of the following pairs of integers and verify that lcm × hcf product of the two numbers

a) 81 and 72

b) 200 and 500

c) 125 and 225

d) 144 and 136

plz answer it

plz

Similar questions