Math, asked by Anonymous, 1 day ago

 \displaystyle   \red{\tt  \int \limits^{x}_{0}  { \theta}^{2} \sqrt{x -  \theta}   \: d \theta}

Answers

Answered by sajan6491
12

\displaystyle \red{\tt \int \limits^{x}_{0} { \theta}^{2} \sqrt{x - \theta} \: d \theta}

\displaystyle \red{\tt \int \limits^{x}_{0} (x - { \theta}^{2}) \sqrt{x -(x -  \theta)} \: d \theta}

\displaystyle \red{\tt \int \limits^{x}_{0} (x {}^{2}  -2 { \theta}^{}x +  { \theta}^{2} )  { \theta} ^{ \frac{1}{2} }  \: d \theta}

\displaystyle \red{\tt \int \limits^{x}_{0} (x {}^{2}  { \theta}^{ \frac{1}{2} } +2  { \theta}^{ \frac{3}{2} }x  +  { \theta} ^{ \frac{5}{2} }  )\: d \theta}

 \displaystyle \tt \red{ \left[ \frac{ {x}^{2}  { \theta}^{ \frac{3}{2} } }{ \frac{3}{2}  }  -  \frac{2x { \theta}^{ \frac{5}{2} } }{ \frac{5}{2} }  +  \frac{ { \theta}^{ \frac{7}{2} } }{ \frac{7}{2} }  \right]^{x}_{0} }

 \displaystyle \tt \red{ \frac{2}{3}  {x}^{ \frac{7}{2} }  -  \frac{4}{5}  {x}^{ \frac{7}{2} }  +  \frac{7}{2}  {x}^{ \frac{7}{2} } }

 \displaystyle \tt \red{ \frac{16}{105}  {x}^{ \frac{7}{2} } }

Similar questions