Math, asked by sajan6491, 2 days ago

\displaystyle \rm \bigg( \dfrac{\log_{10}(1000^{100} )}{100} + \sum_{n = 1}^{100} \dfrac{ \sin(\pi n) + 1}{ { (- 1)}^{n} } \bigg) \sqrt{ \prod_{m = 1}^{1000} \dfrac{ 1}{ \cos(\pi m)^{2} } }

Answers

Answered by mathdude500
7

Appropriate Question :- Evaluate

\displaystyle \rm \bigg( \dfrac{\log_{10}(1000^{100} )}{100} + \sum_{n = 1}^{100} \dfrac{ \sin(\pi n) + 1}{ { (- 1)}^{n} } \bigg) \sqrt{ \prod_{m = 1}^{1000} \dfrac{ 1}{( \cos(\pi m))^{2} } } \\

\large\underline{\sf{Solution-}}

Given expression is

\displaystyle \rm \bigg( \dfrac{\log_{10}(1000^{100} )}{100} + \sum_{n = 1}^{100} \dfrac{ \sin(\pi n) + 1}{ { (- 1)}^{n} } \bigg) \sqrt{ \prod_{m = 1}^{1000} \dfrac{ 1}{ (\cos(\pi m))^{2} } } \\

Let we consider,

\rm \: \displaystyle \rm \dfrac{\log_{10}(1000^{100} )}{100}  \\

We know,

\boxed{ \rm{ \: log_{a}( {x}^{y} ) = y \:  log_{a}(x)  \: }} \\

So, using this, we get

\rm \: =  \:  \displaystyle \rm \dfrac{100 \: \log_{10}1000}{100}  \\

\rm \:  =  \:  log_{10}1000 \\

\rm \:  =  \:  log_{10} {10}^{3}  \\

We know,

\boxed{ \rm{ \: log_{a}( {a}^{x} )  = x \: }} \\

So, using this, we get

\rm \:  =  \: 3 \\

Thus,

\rm\implies \:\boxed{ \rm{ \:\displaystyle \rm \dfrac{\log_{10}(1000^{100} )}{100} = 3 \:  \: }} \\

Now, Consider

\displaystyle \rm \sum_{n = 1}^{100} \dfrac{ \sin(\pi n) + 1}{ { (- 1)}^{n} } \\

can be rewritten as

\rm \:  = \displaystyle \rm \sum_{n = 1}^{100} \dfrac{ \sin(n\pi ) + 1}{ { (- 1)}^{n} } \\

We know,

\boxed{ \rm{ \:sin \: (n\pi) = 0 \:  \forall \: n \:  \in \: N \: }} \\

So, above expression can be rewritten as

\rm \:  = \displaystyle \rm \sum_{n = 1}^{100} \dfrac{ 0+ 1}{ { (- 1)}^{n} } \\

\rm \:  = \displaystyle \rm \sum_{n = 1}^{100} \dfrac{1}{ { (- 1)}^{n} } \\

\rm \:  =  \:   \underbrace{- 1 + 1 - 1 + 1 - 1 +  \cdots + 1} \\   \:  \:  \:  \: \:  \:   \: 100 \: terms

\rm \:  =  \: 0 \\

Hence,

\rm\implies \:\boxed{ \rm{ \:\displaystyle \rm \sum_{n = 1}^{100} \dfrac{ \sin(\pi n) + 1}{ { (- 1)}^{n} } = 0 \:  \: }} \\

Now, Consider

\displaystyle \rm  \sqrt{ \prod_{m = 1}^{1000} \dfrac{ 1}{ (\cos(\pi m))^{2} } } \\

can be rewritten as

\displaystyle \rm  =  \:  \sqrt{ \prod_{m = 1}^{1000} \dfrac{ 1}{ (\cos(m\pi ))^{2} } } \\

We know,

\boxed{ \rm{ \:cos\: (n\pi) =  {( - 1)}^{n}  \:   \:  \:  \:  \: \forall \: n \:  \in \: N \: }} \\

So, using this, we get

\displaystyle \rm  =  \:  \sqrt{ \prod_{m = 1}^{1000} \dfrac{ 1}{ ( - 1)^{2m} } } \\

\displaystyle \rm  =  \:  \sqrt{ \prod_{m = 1}^{1000} \dfrac{ 1}{ 1 } } \\

\displaystyle \rm  =  \:  \sqrt{ \prod_{m = 1}^{1000} 1 } \\

\rm \:  =  \:  \sqrt{ \underbrace{1 \times 1 \times 1 \times  \cdots \times 1}}  \\  \:  \:  \:  \:  \:  \:  \:  \: 1000 \: terms

\rm \:  =  \:   \sqrt{1}  \\

\rm \:  =  \: 1 \\

Thus,

\rm\implies \:\boxed{ \rm{ \:\displaystyle \rm  \sqrt{ \prod_{m = 1}^{1000} \dfrac{ 1}{ (\cos(\pi m))^{2} } } = 1  \: }}\\

Now, Consider the given expression

\displaystyle \rm \bigg( \dfrac{\log_{10}(1000^{100} )}{100} + \sum_{n = 1}^{100} \dfrac{ \sin(\pi n) + 1}{ { (- 1)}^{n} } \bigg) \sqrt{ \prod_{m = 1}^{1000} \dfrac{ 1}{ (\cos(\pi m))^{2} } } \\

On substituting the values evaluated above, we get

\rm \:  =  \: (3 + 0) \times 1 \\

\rm \:  =  \: 3 \\

Hence,

\boxed{ \rm{ \:\displaystyle \rm \bigg( \dfrac{\log_{10}(1000^{100} )}{100} + \sum_{n = 1}^{100} \dfrac{ \sin(\pi n) + 1}{ { (- 1)}^{n} } \bigg) \sqrt{ \prod_{m = 1}^{1000} \dfrac{ 1}{( \cos(\pi m))^{2} } } = 3}} \\

\rule{190pt}{2pt}

Additional Information :-

\begin{gathered}\: \: \: \: \: \: \begin{gathered}\begin{gathered} \footnotesize{\boxed{ \begin{array}{cc} \small\underline{\frak{\pmb{ \red{More \: Formulae}}}} \\ \\ \bigstar \: \bf{ log_{x}(x)  = 1}\\ \\ \bigstar \: \bf{ log_{x}( {x}^{y} )  = y}\\ \\ \bigstar \: \bf{ log_{ {x}^{z} }( {x}^{w} )  = \dfrac{w}{z} }\\ \\ \bigstar \: \bf{ log_{a}(b)  = \dfrac{logb}{loga} }\\ \\ \bigstar \: \bf{ {e}^{logx}  = x}\\ \\ \bigstar \: \bf{ {e}^{ylogx}  =  {x}^{y}}\\ \\ \bigstar \: \bf{log1 = 0}\\ \\  \end{array} }}\end{gathered}\end{gathered}\end{gathered}

Similar questions