Math, asked by sajan6491, 3 days ago

 \displaystyle  \rm\int_{0}^1 { ln }^{2k}  \left \lgroup \frac{ ln \left \lgroup \dfrac{1 -  \sqrt{1 -  {x}^{2} } }{x}  \right \rgroup }{ ln \left \lgroup  \dfrac{1 +  \sqrt{1 -  {x}^{2} } }{x} \right \rgroup }  \right \rgroup \: dx

Answers

Answered by vivekkumar098497
1

Substitute \rm x\mapsto\sqrt{1-x^2} , which transforms the integral to

\displaystyle  \rm\int_0^1 \ln^{2k} \left(\frac{\ln\left(\frac{1-\sqrt{1-x^2}}x\right)}{\ln\left(\frac{1-\sqrt{1-x^2}}x\right)}\right) \, dx = \int_0^1 \ln^{2k}\left(\frac{\ln\left(\frac{1-x}{\sqrt{1-x^2}}\right)}{\ln\left(\frac{1+x}{\sqrt{1-x^2}}\right)}\right) \frac{x}{\sqrt{1-x^2}} \, dx

and factoring  \rm \sqrt{1-x^2}=\sqrt{(1-x)(1+x)} reduces this to

\displaystyle \rm = \int_0^1 \ln^{2k}\left(\frac{\ln\left(\sqrt{\frac{1-x}{1+x}}\right)}{\ln\left(\sqrt{\frac{1+x}{1-x}}\right)}\right) \frac x{\sqrt{1-x^2}} \, dx

The inner logarithms differ only by a sign, so that

\displaystyle \rm = \int_0^1 \ln^{2k}(-1) \frac x{\sqrt{1-x^2}} \, dx

Using the principal branch of the complex logarithm, we have

 \rm\ln(-1) = \ln|-1| + i\arg(-1) = i\pi

and hence

\displaystyle  \rm\int_0^1 \ln^{2k} \left(\frac{\ln\left(\frac{1-\sqrt{1-x^2}}x\right)}{\ln\left(\frac{1-\sqrt{1-x^2}}x\right)}\right) \, dx = (i\pi)^{2k} \underbrace{\int_0^1 \frac x{\sqrt{1-x^2}} \, dx}_{=1} = \boxed{(-\pi^2)^k}

where I assume k is an integer.

Similar questions