Math, asked by sajan6491, 1 day ago

 \displaystyle \rm \int_{0}^{2}\int_{0}^{ \pi}r  \sin^{2}  \theta \:  d \theta \:  dr

Answers

Answered by mathdude500
8

\large\underline{\sf{Solution-}}

Given double integral is

\rm \: \displaystyle \rm \int_{0}^{2}\int_{0}^{ \pi}r \sin^{2} \theta \: d \theta \: dr \\

can be rewritten as

\rm \:  =  \: \displaystyle \rm \int_{0}^{2}\bigg(\int_{0}^{ \pi}r \sin^{2} \theta \: d \theta\bigg) \: dr \\

\rm \:  =  \:  \frac{1}{2} \displaystyle \rm \int_{0}^{2}\bigg(r\int_{0}^{ \pi}2 \sin^{2} \theta \: d \theta\bigg) \: dr \\

\rm \:  =  \:  \frac{1}{2} \displaystyle \rm \int_{0}^{2}\bigg(r\int_{0}^{ \pi}(1 - cos2 \theta) \: d \theta\bigg) \: dr \\

\rm \:  =  \:  \frac{1}{2} \displaystyle \rm \int_{0}^{2}r\bigg(\theta -  \frac{sin2\theta }{2} \bigg)_{0}^{ \pi} \: dr \\

\rm \:  =  \:  \frac{1}{2} \displaystyle \rm \int_{0}^{2}r\bigg((\pi - 0) - (0 - 0)\bigg) \: dr \\

\rm \:  =  \:  \frac{1}{2} \displaystyle \rm \int_{0}^{2}r(\pi) \: dr \\

\rm \:  =  \:  \frac{\pi}{2} \displaystyle \rm \int_{0}^{2}r \: dr \\

\rm \:  =  \:  \frac{\pi}{2} \bigg[\dfrac{ {r}^{2} }{2} \bigg]_{0}^{2} \\

\rm \:  =  \:  \frac{\pi}{2} \bigg[\dfrac{ 4 }{2}  - 0\bigg] \\

\rm \:  =  \:  \frac{\pi}{2} \bigg[2\bigg] \\

\rm \:  =  \: \pi \:  \\

Hence,

\rm\implies \:\boxed{ \rm{ \:\displaystyle \rm \int_{0}^{2}\int_{0}^{ \pi}r \sin^{2} \theta \: d \theta \: dr = \pi \: }} \\

\rule{190pt}{2pt}

Additional Information :-

\begin{gathered}\begin{gathered}\boxed{\begin{array}{c|c} \bf f(x) & \bf \displaystyle \int \rm \:f(x) \: dx\\ \\ \frac{\qquad \qquad}{} & \frac{\qquad \qquad}{} \\ \sf k & \sf kx + c \\ \\ \sf sinx & \sf - \: cosx+ c \\ \\ \sf cosx & \sf \: sinx + c\\ \\ \sf {sec}^{2} x & \sf tanx + c\\ \\ \sf {cosec}^{2}x & \sf - cotx+ c \\ \\ \sf secx \: tanx & \sf secx + c\\ \\ \sf cosecx \: cotx& \sf - \: cosecx + c\\ \\ \sf tanx & \sf logsecx + c\\ \\ \sf \dfrac{1}{x} & \sf logx+ c\\ \\ \sf {e}^{x} & \sf {e}^{x} + c\end{array}} \\ \end{gathered}\end{gathered}

Similar questions