Math, asked by sajan6491, 1 day ago

\displaystyle{\rm \int _0^{log\left({1+\sqrt{2}}\right)}\:\left(\frac{e^x-e^{-x}}{2}\right)^3\cdot \left(\frac{e^x + e^{-x}}{2}\right)^{11}\:dx}

Answers

Answered by mathdude500
6

\large\underline{\sf{Solution-}}

Given integral is

\displaystyle{\rm \int _0^{log\left({1+\sqrt{2}}\right)}\:\left(\frac{e^x-e^{-x}}{2}\right)^3\cdot \left(\frac{e^x + e^{-x}}{2}\right)^{11}\:dx}

can be rewritten as

\rm \:=\dfrac{1}{ {2}^{14} } \displaystyle{\rm \int _0^{log\left({1+\sqrt{2}}\right)}\: {( {e}^{x} + {e}^{ - x} )}^{11} {({e}^{x} - {e}^{ - x})}^{3} \:dx} \\

can be further rewritten as

\rm \:=\dfrac{1}{ {2}^{14} } \displaystyle{\rm \int _0^{log\left({1+\sqrt{2}}\right)}\: {( {e}^{x} + {e}^{ - x} )}^{11} {({e}^{x} - {e}^{ - x})}^{2}({e}^{x} - {e}^{ - x}) \:dx} \\

can be further rewritten as

\rm \:=\dfrac{1}{ {2}^{14} } \displaystyle{\rm \int _0^{log\left({1+\sqrt{2}}\right)}\: {( {e}^{x} + {e}^{ - x} )}^{11} [{({e}^{x} + {e}^{ - x})}^{2} - 4]({e}^{x} - {e}^{ - x}) \:dx} \\

Now, to evaluate this integral, we use method of Substitution.

So, substitute

\rm \: {e}^{x} + {e}^{ - x} = y \\

\rm \: ({e}^{x}  -  {e}^{ - x})dx = dy \\

We know, when we substitute in definite integral, we have to change the limits too.

 \red{\rm \: When \: x = 0} \\

\rm \: {e}^{0} + {e}^{ - 0} = y\rm\implies \:y = 2 \\

 \red{\rm \: When \: x =  log(1 +  \sqrt{2} ) } \\

\rm \: y = {e}^{ log(\sqrt{2} + 1) } + {e}^{ -  log( \sqrt{2} + 1) } \\

\rm \: y =  \sqrt{2} + 1 +  \frac{1}{ \sqrt{2}  + 1}  \\

\rm \: y =  \sqrt{2} + 1 +   \sqrt{2} - 1   \\

\rm \: y =  2\sqrt{2} \\

So, above integral can be rewritten as

\rm \:  =  \:  \dfrac{1}{ {2}^{14} } \displaystyle\int_{2}^{2 \sqrt{2} } {y}^{11}[ {y}^{2} - 4] \: dy \\

\rm \:  =  \:  \dfrac{1}{ {2}^{14} } \displaystyle\int_{2}^{2 \sqrt{2} } [{y}^{13} -  4{y}^{11} ] \: dy \\

\rm \:  =  \:  \dfrac{1}{ {2}^{14} } \bigg(\dfrac{ {y}^{14} }{14}  - \dfrac{4 {y}^{12} }{12} \bigg) _{2}^{2 \sqrt{2} }\\

\rm \:  =  \:  \dfrac{1}{ {2}^{14} } \bigg(\dfrac{ {y}^{14} }{14}  - \dfrac{ {y}^{12} }{3} \bigg) _{2}^{2 \sqrt{2} }\\

\rm \:  =  \:  \dfrac{1}{ {2}^{14} } \bigg(\dfrac{ {2}^{21}  -  {2}^{14} }{14}  - \dfrac{ {2}^{18}  -  {2}^{12} }{3} \bigg) \\

\rm \:  =  \:  \dfrac{1}{ {2}^{14} } \bigg(\dfrac{ {2}^{14}({2}^{7}  - 1)}{14}  - \dfrac{ {2}^{12}({2}^{6}  - 1)}{3} \bigg) \\

\rm \:  =  \: \dfrac{({2}^{7}  - 1)}{14}  - \dfrac{({2}^{6}  - 1)}{3 \times 4} \\

\rm \:  =  \: \dfrac{128  - 1}{14}  - \dfrac{64  - 1}{12} \\

\rm \:  =  \: \dfrac{127}{14}  - \dfrac{63}{12} \\

\rm \:  =  \: \dfrac{127}{14}  - \dfrac{21}{4} \\

\rm \:  =  \: \dfrac{254 - 147}{28}  \\

\rm \:  =  \: \dfrac{107}{28}  \\

Similar questions