Math, asked by sajan6491, 5 days ago

 \displaystyle  \rm  \lim_{n \to \infty } \frac{1}{n}  \left ( \sum _{k = 1}^{n} \frac{n - (k - 1)}{n}     \ln \bigg( \frac{k}{n}  \bigg) \right)

Answers

Answered by mathdude500
35

\large\underline{\sf{Solution-}}

Given expression is

\rm \: \displaystyle \rm \lim_{n \to \infty } \frac{1}{n} \left ( \sum _{k = 1}^{n} \frac{n - (k - 1)}{n} \ln \bigg( \frac{k}{n} \bigg) \right)

can be rewritten as

\rm \: =  \:  \displaystyle \rm \lim_{n \to \infty } \frac{1}{n} \left ( \sum _{k = 1}^{n} \bigg[1 - \dfrac{k}{n} +  \frac{1}{n}  \bigg] \ln \bigg( \frac{k}{n} \bigg) \right) \\

can be further rewritten as

\rm \: =  \:  \displaystyle \rm \lim_{n \to \infty } \frac{1}{n} \left ( \sum _{k = 1}^{n} \bigg[1 - \dfrac{k}{n}  \bigg] \ln \bigg( \frac{k}{n} \bigg) \right) \\

\bigg[ \because \: \rm \:  \dfrac{1}{n }  \to \: 0 \: \: as \:  \: n \:  \to \:  \infty \: \bigg]

Now, using Limit as a Sum of Definite integrals, we have

\rm :\longmapsto\:\dfrac{1}{n} \: changes \: to \: dx

\rm :\longmapsto\:\dfrac{k}{n} \: changes \: to \: x

\rm :\longmapsto\:\displaystyle \sf \lim_{n \to \infty} \sum \: changes \: to \: \int

\rm :\longmapsto\: \: lower \: limit \: a \: = \: \displaystyle \sf \lim_{n \to \infty}\frac{1}{n} = 0

\rm :\longmapsto\: \: upper \: limit \: b \: = \: \displaystyle \sf \lim_{n \to \infty}\frac{n}{n} = \: 1

So, above expression can be rewritten as

\rm \:  =  \: \displaystyle\int_0^1\rm (1 - x) \: logx \: dx \\

Let evaluate first

\rm \:  \: \displaystyle\int\rm (1 - x) \: logx \: dx \\

So, using integration by parts, we get

\rm \: =  \:logx\displaystyle\int\rm (1 - x) \: dx \:  -  \: \displaystyle\int\rm\bigg[\dfrac{d}{dx} logx \: \displaystyle\int\rm \: (1 - x)dx\bigg]dx \\

\rm \: =  \:logx\bigg[x - \dfrac{ {x}^{2} }{2} \bigg] - \displaystyle\int\rm \:  \frac{1}{x} \times \bigg[x - \dfrac{ {x}^{2} }{2} \bigg]dx \\

\rm \: =  \:logx\bigg[x - \dfrac{ {x}^{2} }{2} \bigg] - \displaystyle\int\rm \:   \bigg[1 - \dfrac{ {x} }{2} \bigg]dx \\

\rm \: =  \:logx\bigg[x - \dfrac{ {x}^{2} }{2} \bigg] -  \:   \bigg[x - \dfrac{ {x}^{2} }{4} \bigg] \\

Hence,

\rm \:  \: \displaystyle\int_0^1\rm (1 - x) \: logx \: dx \\

\rm \: =  \:logx\bigg[x - \dfrac{ {x}^{2} }{2} \bigg] \bigg |_0^1 -  \:   \bigg[x - \dfrac{ {x}^{2} }{4} \bigg]\bigg |_0^1 \\

\rm \: =  \:(log1 - 0) - \bigg(1 - \dfrac{1}{4}  \bigg)  \\

\rm \: =  \:0 - \dfrac{3}{4}  \\

\rm \: =  \:-  \: \dfrac{3}{4}  \\

Hence,

 \\ \boxed{\sf{  \:\displaystyle \rm \lim_{n \to \infty } \frac{1}{n} \left ( \sum _{k = 1}^{n} \frac{n - (k - 1)}{n} \ln \bigg( \frac{k}{n} \bigg) \right) =  -  \frac{3}{4} \: }} \\  \\

\rule{190pt}{2pt}

Formulae Used :-

\boxed{\sf{  \:\displaystyle\int\rm \: uvdx \:  =  \: u\displaystyle\int\rm \: vdx - \displaystyle\int\rm\bigg[\dfrac{d}{dx} u\displaystyle\int\rm \: vdx\bigg]dx \: }} \\

\boxed{\sf{  \:\displaystyle\int\rm \:  {x}^{n}dx \:  =  \:  \frac{ {x}^{n + 1} }{n + 1}  + c \: }} \\

\boxed{\sf{  \:\displaystyle\int\rm \: k \: dx \:  =  \: kx \:  +  \: c \:  \: }} \\

\rule{190pt}{2pt}

Additional Information :-

\begin{gathered}\begin{gathered}\boxed{\begin{array}{c|c} \bf f(x) & \bf \displaystyle \int \rm \:f(x) \: dx\\ \\ \frac{\qquad \qquad}{} & \frac{\qquad \qquad}{} \\ \sf k & \sf kx + c \\ \\ \sf sinx & \sf - \: cosx+ c \\ \\ \sf cosx & \sf \: sinx + c\\ \\ \sf {sec}^{2} x & \sf tanx + c\\ \\ \sf {cosec}^{2}x & \sf - cotx+ c \\ \\ \sf secx \: tanx & \sf secx + c\\ \\ \sf cosecx \: cotx& \sf - \: cosecx + c\\ \\ \sf tanx & \sf logsecx + c\\ \\ \sf \dfrac{1}{x} & \sf logx+ c\\ \\ \sf {e}^{x} & \sf {e}^{x} + c\end{array}} \\ \end{gathered}\end{gathered}

Answered by cuteprincess1623
53

Answer:

The \:  answer  \: is \: \dfrac{53}{6}

Step-by-step explanation:

\displaystyle \lim_{n\to \infty}\sum_{i=1}^n\dfrac{(2+\frac{i}{n})^2+(2+\frac{i}{n})}{n}

\begin{gathered}=\displaystyle \lim_{n\to \infty}\sum_{i=1}^n\dfrac{4+\frac{4i}{n}+\frac{i^2}{n^2}+(2+\frac{i}{n})}{n}\\\\=\displaystyle \lim_{n\to \infty}\sum_{i=1}^n\dfrac{6+\frac{5i}{n}+\frac{i^2}{n^2}}{n}\\\\=\displaystyle \lim_{n\to \infty}\sum_{i=1}^n\dfrac{6n^2+5ni+i^2}{n^3}\\\\=\displaystyle \lim_{n\to \infty}\dfrac{1}{n^3} (6n^2\sum_{i=1}^n1+5n\sum_{i=1}^ni+\sum_{i=1}^ni^2)\\\\=\displaystyle \lim_{n\to \infty}\dfrac{1}{n^3} (6n^2(n)+5n\frac{n(n+1)}{2}+\frac{n(n+1)(2n+1)}{6})\\\end{gathered}

\begin{gathered}=\displaystyle \lim_{n\to \infty}(6+\frac{5}{2}\frac{(n+1)}{n}+\frac{1}{6}\frac{(n+1)(2n+1)}{n^2})\\\\=\displaystyle \lim_{n\to \infty}(6+\frac{5}{2}(1+\frac{1}{n})+\frac{1}{6}(1+\frac{1}{n})(2+\frac{1}{n}))\\\\\\=6+\dfrac{5}{2}+\dfrac{2}{6}=\dfrac{53}{6}\end{gathered}

Hope it's helpful!!

Similar questions