Math, asked by sajan6491, 4 days ago

 \displaystyle  \rm\lim_{n \to \infty } \sum_{i = 1}^{n}   \frac{ \left(2 +  \frac{i}{n}  \right)^{2} +  \left(2 +  \frac{ i }{n}  \right) }{n}

Answers

Answered by jitendra12iitg
2

Answer:

The answer is \dfrac{53}{6}

Step-by-step explanation:

    \displaystyle \lim_{n\to \infty}\sum_{i=1}^n\dfrac{(2+\frac{i}{n})^2+(2+\frac{i}{n})}{n}

   =\displaystyle \lim_{n\to \infty}\sum_{i=1}^n\dfrac{4+\frac{4i}{n}+\frac{i^2}{n^2}+(2+\frac{i}{n})}{n}\\\\=\displaystyle \lim_{n\to \infty}\sum_{i=1}^n\dfrac{6+\frac{5i}{n}+\frac{i^2}{n^2}}{n}\\\\=\displaystyle \lim_{n\to \infty}\sum_{i=1}^n\dfrac{6n^2+5ni+i^2}{n^3}\\\\=\displaystyle \lim_{n\to \infty}\dfrac{1}{n^3} (6n^2\sum_{i=1}^n1+5n\sum_{i=1}^ni+\sum_{i=1}^ni^2)\\\\=\displaystyle \lim_{n\to \infty}\dfrac{1}{n^3} (6n^2(n)+5n\frac{n(n+1)}{2}+\frac{n(n+1)(2n+1)}{6})\\

   =\displaystyle \lim_{n\to \infty}(6+\frac{5}{2}\frac{(n+1)}{n}+\frac{1}{6}\frac{(n+1)(2n+1)}{n^2})\\\\=\displaystyle \lim_{n\to \infty}(6+\frac{5}{2}(1+\frac{1}{n})+\frac{1}{6}(1+\frac{1}{n})(2+\frac{1}{n}))\\\\\\=6+\dfrac{5}{2}+\dfrac{2}{6}=\dfrac{53}{6}

Similar questions