Math, asked by sajan6491, 19 days ago

  \displaystyle  \rm  \lim_{n \to  \infty } \sum_{r = 1}^n {cot}^{ - 1} \left (    \frac{ {r}^{3}  - r +  \dfrac{1}{r} }{2}  \right)

Answers

Answered by senboni123456
3

Answer:

Step-by-step explanation:

We have,

\displaystyle\rm{\lim_{n\to\infty}\sum^{n}_{r=1}\,cot^{-1}\left(\dfrac{{r}^{3}-r+\dfrac{1}{r}}{2}\right)}

\displaystyle\rm{=\lim_{n\to\infty}\sum^{n}_{r=1}\,tan^{-1}\left(\dfrac{2}{{r}^{3}-r+\dfrac{1}{r}}\right)}

\displaystyle\rm{=\lim_{n\to\infty}\sum^{n}_{r=1}\,tan^{-1}\left(\dfrac{2r}{{r}^{4}-{r}^{2}+1}\right)}

\displaystyle\rm{=\lim_{n\to\infty}\sum^{n}_{r=1}\,tan^{-1}\left(\dfrac{2r}{1+{r}^{2}\left({r}^{2}-1\right)}\right)}

\displaystyle\rm{=\lim_{n\to\infty}\sum^{n}_{r=1}\,tan^{-1}\left\{\dfrac{2r}{1+r(r+1)\cdot\,r(r-1)}\right\}}

\displaystyle\rm{=\lim_{n\to\infty}\sum^{n}_{r=1}\,tan^{-1}\left\{\dfrac{r(r+1)-r(r-1)}{1+r(r+1)\cdot\,r(r-1)}\right\}}

\displaystyle\rm{=\lim_{n\to\infty}\sum^{n}_{r=1}\,\left\{tan^{-1}\left({r}^{2}+r\right)-tan^{-1}\left({r}^{2}-r\right)\right\}}

This is the telescoping sum, so,

\displaystyle\rm{=\lim_{n\to\infty}\left\{tan^{-1}\left({n}^{2}+n\right)-tan^{-1}\left(0\right)\right\}}

\displaystyle\rm{=\lim_{n\to\infty}\,tan^{-1}\left({n}^{2}+n\right)}

\displaystyle\rm{=tan^{-1}\left(\infty\right)}

\displaystyle\rm{=\dfrac{\pi}{2}}

Similar questions