Math, asked by Anonymous, 20 days ago

 \displaystyle\rm \red{the \: value \: of \:  \lim_{x \to a} \frac{1}{ {x}^{2}  -  {a}^{2}  }  \int_{0}^x \sin( {t}^{2} )  dx,a \ne0 \: is }

Answers

Answered by senboni123456
7

Step-by-step explanation:

We have,

 \displaystyle\lim_{x \to a} \frac{1}{ {x}^{2} - {a}^{2} } \int_{0}^x \sin( {t}^{2} ) dt

 \displaystyle = \lim_{x \to a} \frac{  \displaystyle\int_{0}^x \sin( {t}^{2} ) dt}{ {x}^{2} - {a}^{2} }

Using l'hospital's rule,

 \displaystyle = \lim_{x \to a} \frac{  \sin( {x}^{2} )  \cdot \dfrac{d}{dx}(x) - 0}{ 2x }

 \displaystyle = \lim_{x \to a} \frac{  \sin( {x}^{2} )  \cdot 1}{ 2x }

 \displaystyle = \lim_{x \to a} \frac{  \sin( {x}^{2} )  }{ 2x }

=  \dfrac{  \sin( {a}^{2} )  }{ 2a }

Answered by ItzAdityaKarn
2

REQUIRED ANSWER

\displaystyle\lim_{x \to a} \frac{1}{ {x}^{2} - {a}^{2} } \int_{0}^x \sin( {t}^{2} ) dtx</p><p>

\displaystyle = \lim_{x \to a} \frac{ \displaystyle\int_{0}^x \sin( {t}^{2} ) dt}{ {x}^{2} - {a}^{2} }=x

Using l'hospital's rule,

\displaystyle = \lim_{x \to a} \frac{ \sin( {x}^{2} ) \cdot \dfrac{d}{dx}(x) - 0}{ 2x }=x

</p><p>\displaystyle = \lim_{x \to a} \frac{ \sin( {x}^{2} ) \cdot 1}{ 2x }=x</p><p>

</p><p>\displaystyle = \lim_{x \to a} \frac{ \sin( {x}^{2} ) }{ 2x }=x</p><p>

= \dfrac{ \sin( {a}^{2} ) }{ 2a }

Hope it helps

Similar questions