Math, asked by Anonymous, 4 months ago

\displaystyle\sf 2^x - 3^x = \sqrt{6^x - 9^x}

content answers needed!!!​

Answers

Answered by ishitasrc
1

Answer:

Hope this helps.

Mark me brainliest if it is helpful.

Also,rate my answer and give me thanks

Attachments:
Answered by anindyaadhikari13
7

Required Answer:-

Given:

 \sf \mapsto {2}^{x} -  {3}^{x}  =  \sqrt{ {6}^{x} -  {9}^{x}  }

To find:

.

  • The values of x.

Solution:

We have,

 \sf \implies {2}^{x} -  {3}^{x}  =  \sqrt{ {6}^{x} -  {9}^{x}  }

Squaring both sides, we get,

 \sf \implies ({2}^{x} -  {3}^{x} )^{2}  =  {6}^{x} -  {9}^{x}

 \sf \implies ({2}^{x} -  {3}^{x} )^{2}  =   {3}^{x}  \bigg( \dfrac{ {6}^{x} }{ {3}^{x} }  -\dfrac{ {9}^{x} }{ {3}^{x} } \bigg)

 \sf \implies ({2}^{x} -  {3}^{x} )^{2}  =   {3}^{x}( {2}^{x}  -  {3}^{x} )

 \sf \implies{3}^{x}( {2}^{x}  -  {3}^{x} ) -  {( {2}^{x} -  {3}^{x} ) }^{2}  = 0

Taking 2ˣ- 3ˣ as common, we get,

 \sf \implies( {2}^{x}  -  {3}^{x} ) \{ {3}^{x}  -  ( {2}^{x} -  {3}^{x} ) \}  = 0

 \sf \implies( {2}^{x}  -  {3}^{x} ) (2 \times  {3}^{x}  -  {2}^{x})  = 0

By zero product rule,

 \sf \implies( {2}^{x}  -  {3}^{x} ) = 0 \: or \:  (2 \times  {3}^{x}  -  {2}^{x})  = 0

So,

 \sf \implies( {2}^{x}  -  {3}^{x} ) = 0

 \sf \implies{2}^{x} = {3}^{x}

This can only be possible when x = 0 i.e, 2 = 1 and 3 = 1 which is same.

So, x = 0 is a solution!!!

Again,

 \sf \implies 2 \times  {3}^{x}  -  {2}^{x} = 0

 \sf \implies 2 \times  {3}^{x} =  {2}^{x}

 \sf \implies  \bigg(\dfrac{2}{3} \bigg)^{x}  = 2

Taking log on both sides, we get,

 \sf \implies \log  \bigg(\dfrac{2}{3} \bigg)^{x}  =  \log(2)

 \sf \implies x\log  \bigg(\dfrac{2}{3} \bigg) =  \log(2)

 \sf \implies x =  \dfrac{ \log(2)}{\log  \bigg(\dfrac{2}{3} \bigg) }

 \sf \implies x =   \log_{ \frac{2}{3} }(2)

This is another solution of the question!!!

(Hence Solved)

Answer:

  •   \sf x = 0, \log_{ \frac{2}{3} }(2)
Similar questions